The Visual Computer

, Volume 20, Issue 10, pp 665–681

Visualization of hypersurfaces and multivariable (objective) functions by partial global optimization

original article

Abstract

Hypersurfaces of the type z=F(x1,...,xn), where F are single-valued functions of n real variables, cannot be visualized directly due to our inability to perceive dimensions higher than three. However, by projecting them down to two or three dimensions many of their properties can be revealed. In this paper a method to generate such projections is proposed, requiring successive global minimizations and maximizations of the function with respect to n-1 or n-2 variables. A number of examples are given to show the usefulness of the method, particularly for optimization problems where there is a direct interest in the minimum or maximum domains of objective functions.

Keywords

Hypergeometry Hypersurface Visualization Optimization Design studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley DH (1987) A connectionist machine for genetic hill climbing. Kluwer, BostonGoogle Scholar
  2. 2.
    Arabeyre J, Steiger J, Teather W (1969) The airline crew scheduling problem: a survey. Transp Sci 3(2):140-163CrossRefGoogle Scholar
  3. 3.
    Asimov D (1985) The grand tour: a tool for viewing multidimensional data. SIAM J Sci Stat Comput 6(1):128–143MathSciNetCrossRefGoogle Scholar
  4. 4.
    Back T (1997) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Bajaj CL (1990) Rational hypersurface display. ACM Comput Graph 24(2):117–127CrossRefGoogle Scholar
  6. 6.
    Banchoff TT (1986) Visualizing two-dimensional phenomena in four-dimensional space. In: Wegeman EJ, DePriest DJ (eds) Statistical image processing and graphics. Dekker, New York, pp 187–202Google Scholar
  7. 7.
    Bhaniramka P, Wenger R, Crawfis R (2000) Isosurfacing in higher dimensions. In: Proceedings of the IEEE Visualization Conference, Salt Lake City, UT, pp 267–273, 566, 8–13 October 2000Google Scholar
  8. 8.
    Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  9. 9.
    Carr DB, Nicholson WL, Littlefeld RJ, Hall DL (1986) Interactive color display methods for multivariate data. In: Wegeman EJ, DePriest DJ (eds) Statistical image processing and graphics. Dekker, New York, pp 215–250Google Scholar
  10. 10.
    Chen JX, Wang S, (2001) Data visualization: parallel coordinates and dimension reduction. Comput Sci Eng 3(5):110–113CrossRefGoogle Scholar
  11. 11.
    Cornell JA (2002) Experiments with mixtures. Wiley, New YorkGoogle Scholar
  12. 12.
    Craven MW, Shavlik J (1992) Visualization learning and computation in artificial neural networks. Int J Artif Intell Tools 1(3):399–425CrossRefGoogle Scholar
  13. 13.
    Encarnação JL, Lindner R, Schlechtendahl EG (1990) Computer Aided Design. Fundamentals and System Architecture. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    Feiner S, Beshers C (1990) Visualizing n-dimensional virtual worlds with n-Vsion. Comput Graph 24(2):37–38CrossRefGoogle Scholar
  15. 15.
    Feiner S, Beshers C (1990) Worlds within worlds: metaphors for exploring n-dimensional virtual worlds. In: Proceedings of the 3rd ACM SIGGRAPH Symposium on User Interface Software and Technology, Snowbird, UT, pp 76–83, 3–5 October 1990Google Scholar
  16. 16.
    Grüne L, Metscher M, Ohlberger M (1999) On numerical algorithm and interactive visualization for optimal control problems. Comput Vis Sci 1(4):221–229CrossRefGoogle Scholar
  17. 17.
    Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst, Man Cybern 1(3):296–297Google Scholar
  18. 18.
    Hansen P, Jaumard B, Lu SH (1989) Some further results on monotonicity in globally optimal design. ASME J Mech Trans Automat Des 111(3):345–352CrossRefGoogle Scholar
  19. 19.
    Hinton GE, Sejnowski TJ, Ackley DH (1984) Boltzman machines: constraint satisfaction networks that learn. Technical Report CMU-CS-84-119, Carnegie-Mellon University, Pittsburgh, PAGoogle Scholar
  20. 20.
    Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(2):69–91CrossRefGoogle Scholar
  21. 21.
    Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the 1st IEEE Conference on Visualization, San Francisco, CA, pp 361–378, 23–26 October 1990Google Scholar
  22. 22.
    Jones CV (1996) Visualization and optimization. Kluwer, BostonGoogle Scholar
  23. 23.
    Jones CV (1998) Interactive transactions of OR/MS. http://catt.bus.okstate.edu/jones98/Google Scholar
  24. 24.
    Keiper J, Wickam-Jones T (1994) Design tools for visualization and optimization. ORSA J Comput 6(3):273–277CrossRefGoogle Scholar
  25. 25.
    Messac A, Chen X (2000) Visualizing the optimization process in real-time using physical programming. Eng Optim 32(6):721–747MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mihalisin T, Timlin J, Schwengler J (1991) Visualizing multivariate functions, data and distributions. IEEE Comput Graph Appl 11(3):28–35CrossRefGoogle Scholar
  27. 27.
    Napel S, Marks MP, Rubin GD, Jeffrey RB, Dake MD, Enzmann DR, McDonnell CH, Song SM (1992) CT angiography using spiral CT and maximum intensity projections. Radiology 185(2):607-610CrossRefGoogle Scholar
  28. 28.
    Nielson GM, Foley TA, Hamann B, Lane D (1991) Visualizing and modeling scattered multivariate data. IEEE Comput Graph Appl 11(3):47–55CrossRefGoogle Scholar
  29. 29.
    Noll AM (1967) A computer technique for displaying n-dimensional hyperobjects. Commun ACM 10(8):469–473CrossRefGoogle Scholar
  30. 30.
    Papalambros PY, Wilde DJ (2000) Principles of optimal design: modeling and computation. Cambridge University Press, Cambridge, UKGoogle Scholar
  31. 31.
    Parkinson AR, Balling RJ (2002) The OptdesX design optimization software. Struct Multidisc Optim 23(2):127–139CrossRefGoogle Scholar
  32. 32.
    Press WH, Flannery BP, Teukolsky S, Vetterling W T (1989) Numerical recipes. Cambridge University Press, Cambridge, UKGoogle Scholar
  33. 33.
    Pudmenzky A (1998) A visualization tool for N-dimensional error surfaces. Australian Conference on Neural Networks ACNN’98, University of Queensland, Brisbane, Australia, 11–13 February 1998Google Scholar
  34. 34.
    Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3(3):175–184MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rossnick S, Laub G, Braeckle R, Bachus R, Kennedy D, Nelson A, Dzik S, Starewicz A (1986) Three dimensional display of blood vessels in MRI. In: Proceedings of the IEEE Computers in Cardiology Conference, New York, pp 193–196Google Scholar
  36. 36.
    Shaffer CA, Knill DL, Watson LT (1998) Visualization for multiparameter aircraft designs. In: Proceedings of the IEEE Visualization Conference, Triangle Research Park, NC, pp 491–494,575, 18–23 October 1998Google Scholar
  37. 37.
    Streeter M, Ward M, Alvarez SA (2001) N2VIS: an interactive visualization tool for neural networks. In: Proceedings of the International Society for Optical Engineering (SPIE) Visual Data Exploration and Analysis VIII, San Jose, CA, pp 234–241, 22–23 January 2001Google Scholar
  38. 38.
    Van Wijk JJ, Van Liere R (1993) HyperSlice: visualization of scalar functions of many variables. In: Proceedings of the IEEE Visualization Conference, San Jose, CA, pp 119–125, 25–29 October 1993Google Scholar
  39. 39.
    Wegenkittl R, Löffelmann H, Gröller E (1997) Visualizing the behavior of higher dimensional dynamical systems. In: Proceedings of the IEEE Visualization Conference, Phoenix, AZ, pp 291–296, 569, 19–24 October 1997Google Scholar
  40. 40.
    Wejchert J, Tesauro G (1990) Neural network visualization. In: Touretzky DS (ed) Advances in neural information processing systems. Morgan Kaufmann, San Mateo, CA, pp 465–472Google Scholar
  41. 41.
    Winer EH, Bloebaum CL (2001) Visual design steering for optimization solution improvement. Struct Multidisc Optim 22(3):219–229CrossRefGoogle Scholar
  42. 42.
    Winer EH, Bloebaum CL (2002) Development of visual design steering as an aid in large-scale multidisciplinary design optimization part I & II. Struct Multidisc Optim 23(6):412–435CrossRefGoogle Scholar
  43. 43.
    Wright H, Brodlie K, David T (2000) Navigating high-dimensional spaces to support design steering. In: Proceedings of the IEEE Visualization Conference, Salt Lake City, UT, pp 291–296, 569, 8–13 October 2000Google Scholar
  44. 44.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRefGoogle Scholar
  45. 45.
    Wolfram Research (2004) Math-World, http://mathworld.wolfram.com/topics/MultidimensionalGeometry.htmlGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of TulsaTulsaUSA
  2. 2.Department of Mechanical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations