The Visual Computer

, Volume 19, Issue 7–8, pp 565–580 | Cite as

Manifold-guaranteed out-of-core simplification of large meshes with controlled topological type

  • Yong-Jin LiuEmail author
  • Matthew Ming-Fai Yuen
  • Kai Tang
original article


In this paper, a simple and efficient algorithm is proposed for manifold-guaranteed out-of-core simplification of large meshes with controlled topological type. By dual-sampling the input large mesh model, the proposed algorithm utilizes a set of Hermite data (sample points with normals) as an intermediate model representation, which allows the topological structure of the mesh model to be encoded implicitly and thus makes it particularly suitable for out-of-core mesh simplification. Benefiting from the construction of an in-core signed distance field, the proposed algorithm possesses a set of features including manifoldness of the simplified meshes, toleration of nonmanifold mesh data input, topological noise removal, topological type control and, sharp features and boundary preservation. A novel, detailed implementation of the proposed algorithm is presented, and experimental results demonstrate that very large meshes can be simplified quickly on a low-cost off-the-shelf PC with tightly bounded approximation errors and with time and space efficiency.


Out-of-core mesh simplification Large data Two-manifold meshes Controlled topological type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardini F, Mittleman J, Rushmeier H, Taubin G (1999) Case study: scanning Michelangelo’s Florentine Pieta. In: Proceedings of ACM SIGGRAPH ’99, Los Angeles, August 1999, course notes 4. Google Scholar
  2. 2.
    Bernardini F, Martin I, Mittleman J, Rushmeier H, Taubin G (2002) Building a digital model of Michelangelo’s Florentine Pieta. IEEE Comput Graph Appl 22(1):59–67 CrossRefGoogle Scholar
  3. 3.
    Campagna S, Kobbelt L, Seidel HP (1998) Directed edges: a scalable representation for triangle meshes. ACM J Graph Tools 3(4):1–12 CrossRefGoogle Scholar
  4. 4.
    Chiang YJ, Silva CT, Schroeder WJ (1998) Interactive out-of-core isosurface extraction. In: Proceedings of Visualization ’98, Research Triangle Park, NC, October 1998, IEEE, pp 167–174 Google Scholar
  5. 5.
    Cignoni P, Marino P, Montani C, Puppo E, Scopigno R (1997) Speeding up isosurface extraction using interval trees. IEEE Trans Visual Comput Graph 3(2):158–170 CrossRefGoogle Scholar
  6. 6.
    Cignoni P, Montani C, Scopigno R (1998a) A comparison of mesh simplification algorithms. Comput Graph 22(1):37–54 CrossRefGoogle Scholar
  7. 7.
    Cignoni P, Rocchini C, Scopigno R (1998b) Metro: measuring error on simplified surfaces. Comput Graph Forum 17(2):167–174 CrossRefGoogle Scholar
  8. 8.
    Cignoni P, Montani C, Rocchini C, Scopigno R (2003) External memory management and simplification of huge meshes. IEEE Trans Visualizat Comput Graph 9(4):525–537CrossRefGoogle Scholar
  9. 9.
    El-Sana J, Chiang YJ (2000) External memory view-dependent simplification. In: Proceedings of Eurographics ’00, Switzerland, Aug 2000. Comput Graph Forum 19(3):139–150 CrossRefGoogle Scholar
  10. 10.
    Fei G, Cai K, Guo B, Wu E (2002) An adaptive sampling scheme for out-of-core simplification. Comput Graph Forum 21(2):111–119 CrossRefGoogle Scholar
  11. 11.
    Fomenko A, Kunii T (1997) Topological modeling for visualization. Springer, Berlin Heidelberg New York Google Scholar
  12. 12.
    Garland M, Heckbert P (1997) Surface simplification using quadratic error metrics. In: Proceedings of SIGGRAPH ’97, Las Angeles, Aug 1997, pp 209–16 Google Scholar
  13. 13.
    Garland M (1999a) Multiresolution modeling: survey and future opportunities. In: Proceedings of Eurographics ’99, Italy, Sep 1999, State of the art report, pp 111–131 Google Scholar
  14. 14.
    Garland M (1999b) Quadric-based polygonal surface simplification. Ph.D. thesis, Carnegie Mellon University, Department of Computer Science, Pittsburgh Google Scholar
  15. 15.
    Garland M, Shaffer E (2002) A multiphase approach to efficient surface simplification. In: Proceedings Visualization ’02, Boston, Oct 2002. IEEE Press, New York, pp 117–124 Google Scholar
  16. 16.
    Gueziec A, Taubin G, Lazarus F, Hom B (2001) Cutting and stitching: converting sets of polygons to manifold surfaces. IEEE Trans Visualizat Comput Graph 7(2):136–151 CrossRefGoogle Scholar
  17. 17.
    Hoppe H (1998) Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Proceedings of Visualization ’98, North Carolina, Oct 1998. IEEE Press, New York, pp 35–42 Google Scholar
  18. 18.
    Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W (1992) Surface reconstruction from unorganized points. In: Proceedings of SIGGRAPH ’92, Chicago, July 1992, pp 71–78 Google Scholar
  19. 19.
    Hubeli A, Gross M (2001) Multiresolution methods for nonmanifold models. IEEE Trans Visualizat Comput Graph 7(3):207–221 CrossRefGoogle Scholar
  20. 20.
    Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of Hermite data. In: Proceedings of SIGGRAPH ’02, San Antonio, July 2002, pp 339–46 Google Scholar
  21. 21.
    Kobbelt L, Botsch M, Schwanecke U, Seidel H (2001) Feature sensitive surface extraction from volume data. In: Proceedings of SIGGRAPH ’01, New Orleans, Aug 2001, pp 57–66 Google Scholar
  22. 22.
    Levoy M, Rusinkiewcz S, Ginzton M, Ginsberg J, Pulli K, Koller D, Anderson S, Shade J, Curless B, Pereira L, Davis J, Fulk D (2000) The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of SIGGRAPH ’00, New Orleans, July 2000, pp 131–144 Google Scholar
  23. 23.
    Lindstrom P (2000) Out-of-core simplification of large polygonal models. In: Proceedings of SIGGRAPH ’00, New Orleans, July 2000, pp 259–262 Google Scholar
  24. 24.
    Lindstrom P, Silva C (2001) A memory insensitive technique for large model simplification. In: Proceedings of Visualization ’01, location, day month 2001. IEEE Press, pp 121–126 Google Scholar
  25. 25.
    Liu YJ, Yuen MMF (2003) Optimized triangle mesh reconstruction from unstructured points. Vis Comput 19(1):23–37 CrossRefGoogle Scholar
  26. 26.
    Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH ’87, Anaheim California, July 1987. Comput Graph, 21(4):163–169 Google Scholar
  27. 27.
    Montani C, Scateni R, Scopigno R (1994) A modified look-up table for implicit disambiguation of Marching Cubes. Vis Comput 10(6):353–355 CrossRefGoogle Scholar
  28. 28.
    Popovic J, Hoppe H (1997) Progressive simplicial complexes. In: Proceedings of SIGGRAPH ’97, Los Angeles, Aug 1997, pp 217–224 Google Scholar
  29. 29.
    Rocchini C, Cignoni P, Montani C, Pingi P, Scopigno R (2001) A low cost 3D scanner based on structured light. In: Proceedings of Eurographics ’01, Manchester, UK, Sep 2001. Comput Graph Forum 20(3):299–308 CrossRefGoogle Scholar
  30. 30.
    Rossignac J, Borrel P (1993) Multi-resolution 3D approximation for rendering complex scenes. In: Falcidieno B, Kunii TL (eds) Geometric modeling in computer graphics. Berlin New York Springer-Verlag, pp 455–465 Google Scholar
  31. 31.
    Shaffer E, Garland M (2001) Efficient adaptive simplification of massive meshes. In: Proceedings of Visualization ’01, San Diego, Oct 2001. IEEE Press, New York, pp 127–134 Google Scholar
  32. 32.
    Taubin G (2001) Dual mesh resampling. In: Proceedings of Pacific Graphics ’01, Tokyo Japan, Oct 2001. IEEE Press, New York, pp 180–188 Google Scholar
  33. 33.
    Van Gelder A, Wilhelms J (1994) Topological considerations in isosurface generation. ACM Trans Graph 13(4):337–375 CrossRefGoogle Scholar
  34. 34.
    Wood Z, Hoppe H, Desbrun M, Schroder P (2002) Isosurface topology simplification. Technical Report MSR-TR-2002-28, Microsoft Research, Redmond, WA Google Scholar
  35. 35.
    Ying L, Zorin D (2001) Nonmanifold subdivision. In: Proceedings of Visualization ’01, San Diego, Oct 2001. IEEE Press, New York, pp 325–569 Google Scholar
  36. 36.
    Zheng J, Zhong L (1999) Virtual recovery of excavated relics. IEEE Comput Graph Appl 19(3):6–11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations