Genesis and evolution of the South Atlantic volcanic islands offshore Brazil

  • Webster MohriakEmail author


The Brazilian continental margin includes several volcanic islands, submerged volcanic seamounts, and a unique non-volcanic archipelago located in a transform segment of the Equatorial South Atlantic. The mechanism of formation of these islands is related to post-breakup magmatic episodes dated as Late Cretaceous to Pleistocene. Diverse Late Cretaceous to Paleogene alkaline magmatic episodes are registered in southeast Brazil, resulting in igneous plugs onshore and volcanic structures offshore. The Abrolhos Volcanic Complex in eastern Brazil is characterized by several volcanic features on the continental shelf, including small islands that expose Paleogene sedimentary layers interbedded with volcanic sequences. The adjacent Vitória-Trindade Chain extends to oceanic crust forming basaltic to alkaline seamounts that outcrop at the Trindade Archipelago, the easternmost islands in Brazil with the youngest volcanic eruptions. The Fernando de Noronha lineament in northeast Brazil is characterized by Neogene alkaline igneous plugs. The small islets in the São Pedro—São Paulo archipelago, located near the mid-Atlantic ridge, are formed by exhumed mantle rocks related to compressional episodes a transform fault zone. The Rio Grande Rise in southern Brazil is characterized by shallow Paleogene seamounts and a large oceanic plateau probably related to subaerial spreading centers formed in the Late Cretaceous. Multiple mechanisms are responsible for the origin and evolution of the volcanic islands offshore Brazil in continental, transitional, and oceanic crust settings, including volcanic build-ups, leaking fracture zones, and hotspots. Some of the islands might be related to mantle plume activity, as indicated by comparisons with modern mantle plume analogues in the South Atlantic.



I thank the organizing committee of the First Brazilian Symposium on Marine Geology and Geophysics for their kind invitation to present a special lecture at the successful meeting that was held in Rio de Janeiro in November 2018, and their indication to prepare a full review paper for the special publication “From the Coastal Zone to the Deep Sea” in the GeoMarine Letters.

I am grateful to several colleagues at Petrobras, Rio de Janeiro State University, University of São Paulo, and other academic and research institutions for their technical contributions, lifelong cooperation, and enthusiastic discussions on the geology of the volcanic islands in the South Atlantic, particularly P. Szatmari, M. Geraldes, and A. C. Santos. I thank A. P. Bischoff (University of Canterbury, New Zealand) for reading the first draft and providing enlightening suggestions. I also express my gratitude to two anonymous referees who provided a most thorough critical review of the manuscript, and provided many detailed and constructive comments that substantially improved the scientific contents, organization and focus of this paper.


  1. Almeida FFM (1956) Geologia e Petrografia do Arquipélago de Fernando de Noronha. Rio de Janeiro: Div. Geol. Miner.:181 p. (Monogr. XIII)Google Scholar
  2. Almeida FFM (1961) Geologia e petrologia da Ilha de Trindade. Rio de Janeiro: Div. Geol. Miner. DNPM., 198 p., mapa (Monogr. XVIII)Google Scholar
  3. Almeida FFM (1991) O alinhamento magmático de Cabo Frio, in: Simpósio de Geologia do Sudeste 2, São Paulo, Atas... São Paulo, SBG SP/RJ: 423–428Google Scholar
  4. Almeida FFM (2006) Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica. Terræ Didatica 2(1):3–18CrossRefGoogle Scholar
  5. Almeida FFM, Carneiro CDR, Mizusaki AMP (1996) Correlação do magmatismo das bacias da margem continental brasileira com o das áreas emersas adjacentes. Rev Bras Geosci 26(3):125–138CrossRefGoogle Scholar
  6. Almeida J, Dios F, Mohriak WU, Valeriano CM, Heilbron M, Eirado LG, Tomazzoli E (2013) Pre-rift tectonic scenario of the Eo-cretaceous Gondwana break-up along SE Brazil–SW Africa: insights from tholeiitic mafic dyke swarms. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate divergent margins, vol 369. Geological Society, London, Special Publications, pp 11–40Google Scholar
  7. Alves EC, Maia M, Sichel SE, Campos CMP (2006a) Zona de fratura de Vitória-Trindade no Oceano Atlântico sudeste e suas implicações tectônicas. Revista Brasileira de Geofísica 24(1):117–127CrossRefGoogle Scholar
  8. Alves TM, Moita C, Sandnes F, Cunha T, Monteiro JH, Pinheiro LM (2006b) Mesozoic–Cenozoic evolution of North Atlantic continental-slope basins: the Peniche basin, western Iberian margin. AAPG Bull 90(1):31–60CrossRefGoogle Scholar
  9. Barker PF (1983) Tectonic evolution and subsidence history of the Rio Grande rise, in P. F. Barker, R. L. Carlson, D. A. Johnson et al. (eds.), Initial reports of the deep sea drilling project, Washington (U.S. Govt. Printing Office) 72:953–976Google Scholar
  10. Barker PF, Carlson RL, Johnson DA, Cepek P, Coulbourn W, Gamboa LA, Hamilton N, Melo U, Pujol C, Shor AN, Suzyumov AE, Tjalsma LRC, Walton WH, Weiss W (1981) Deep Sea drilling project leg 72: Southwest Atlantic paleocirculation and Rio Grande rise tectonics. Geol Soc Am Bull 92:294–309CrossRefGoogle Scholar
  11. Batiza R and White JDL (2000) Submarine lavas and Hyaloclastite, in The Encyclopedia of Volcanoes, edited by H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer and J. Stix, Academic Press, New York. 361-381Google Scholar
  12. Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371CrossRefGoogle Scholar
  13. Beniest A, Koptev A, Burov E (2017a) Numerical models for continental break-up: implications for the South Atlantic. Earth Planet Sci Lett 461:176–189CrossRefGoogle Scholar
  14. Beniest A, Koptev A, Leroy S, Sassi W, and Guichet X (2017b) Two-branch break-up systems by a single mantle plume: insights from numerical modeling, Geophys Res Lett, 44(19), 958920139597CrossRefGoogle Scholar
  15. Bird P (2003) An updated digital model of plate boundaries, geochemistry, geophysics. Geosystems 4(3):1027. CrossRefGoogle Scholar
  16. Bischoff AP, Nicol A, Beggs M (2017). Stratigraphy of architectural elements in a buried volcanic system and implications for hydrocarbon exploration. Interpretation, 5(3):141–159CrossRefGoogle Scholar
  17. Blaich OA, Faleide JI, Tsikalas F, Gordon AC, Mohriak W (2013) Crustal-scale architecture and segmentation of the South Atlantic volcanic margin. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate Divergent Margins, vol 369. Geological Society, London, Special Publications, pp 167–183Google Scholar
  18. Boillot G, Grimaud S, Mauffret A, Mougenot D, Kornprobst J, Mergoil-Daniel J, Torrent G (1980) Ocean-continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank. Earth Planet Sci Lett 48:23–34CrossRefGoogle Scholar
  19. Bonattti E, Hamlyn P, Ottonello G (1981) Upper mantle beneath a young oceanic rift: peridotites from the island of Zabargad (Red Sea). Geology 9:474–479CrossRefGoogle Scholar
  20. Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Biancale R, Gabalda G, Reinquin F, Sarrailh M (2012) World gravity map, in: BGI-CGMW-CNES-IRD (Ed.). Commission for the Geological Map of the World, Paris, p 8Google Scholar
  21. Buck WR (2017) The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth Planet Sci Lett 446:62–69CrossRefGoogle Scholar
  22. Campos CWM, Ponte FC, Miura K (1974) Geology of the Brazilian continental margin. In: Burk CA, Drake CL (eds) The geology of the continental margins. Springer-Verlag, New York, pp 447–461CrossRefGoogle Scholar
  23. Cande SC, LaBrecque JL, Haxby WF (1988) Plate kinematics of the South Atlantic: Chron C34 to present. J Geophys Res 93(B11):13,479–13,492CrossRefGoogle Scholar
  24. Chevallier L (1987) Tectonic and structural evolution of Gough volcano: a volcanological model. J Volcanol Geotherm Res 33(4):325–336CrossRefGoogle Scholar
  25. Chevallier L, Verwoerd WJ (1987) Dynamic interpretation of Tristan da Cunha Volcano, South Atlantic Ocean. J Volcanol Geotherm Res 34:35–49CrossRefGoogle Scholar
  26. Coffin MF, Eldholm O (1994) Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev Geophys 32(1):1–36. CrossRefGoogle Scholar
  27. Coffin MF, Eldholm O (2001) Large igneous provinces: progenitors of some ophiolites? In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352. Geological Society of America, Boulder, Colorado, Special Paper, pp 59–70Google Scholar
  28. Condie KC (2001) Mantle plumes and their record in earth history. Press, Cambridge University 306 ppCrossRefGoogle Scholar
  29. Constantino RR, Hackspacher PC, Souza IA, Costa ISL (2017) Basement structures over Rio Grande rise from gravity inversion. J S Am Earth Sci 75:85–91CrossRefGoogle Scholar
  30. Cordani UG (1970) Idade do vulcanismo do Oceano Atlântico Sul. Boletim Instituto de Geociências e Astronomia 1:9–75Google Scholar
  31. Cordani UG, Blazekovic A(1970) Idades radiométricas das rochas vulcânicas dos Abrolhos, Congresso Brasileiro de Geologia, 24, Brasília, 1970. SBG, Anais... Brasília, pp 265–270Google Scholar
  32. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308CrossRefGoogle Scholar
  33. Detrick RS, Sclater JG, Thiede J (1977) The subsidence of aseismic ridges. Earth Planet Sci Lett 34:185–196CrossRefGoogle Scholar
  34. Doré AG, Lundin ER, Kusznir NJ, Pascal C (2008) Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: pros, cons and some new ideas. In: Johnson H, Doré AG, Gatliff RW, Holdsworth R, Lundin ER, Ritchie JD (eds) The Nature and Origin of Compression in Passive Margins, vol 306. Geological Society, London, Special Publications, pp 1–26Google Scholar
  35. Duncan RA (1981) Hotspots in the southern oceans - an absolute frame of reference for motion of the Gondwana continents. Tectonophysics 74:29–42CrossRefGoogle Scholar
  36. Eagles G (2007) New angles on South Atlantic opening. Geophys J Int 168(1):353–361CrossRefGoogle Scholar
  37. Ernesto M, Marques LS, Piccirillo EM, Molina EC, Ussami N, Comin-Chiaramonti P, Bellieni G (2002) Paraná Magmatic Province - Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic considerations and alternative heat sources. J Volcanol Geotherm Res 118:15–36CrossRefGoogle Scholar
  38. Ferrari AL, Riccomini C (1999) Campo de esforços Plio-Pleistocênico na Ilha da Trindade (Oceano Atlântico Sul, Brasil) e sua relação com a tectônica regional. Rev Bras Geosci 29(2):195–202CrossRefGoogle Scholar
  39. Fetter M, De Ros LF, Bruhn CHL (2009) Petrographic and seismic evidence for the depositional setting of giant turbidite reservoirs and the paleogeographic evolution of Campos Basin, offshore Brazil. Mar Pet Geol 26:824–853CrossRefGoogle Scholar
  40. Fodor RV, McKee EH, Asmus HE (1983) K - Ar ages and the opening of the South Atlantic Ocean: basaltic rocks from the Brazilian margin. Mar Geol 54:M1–M8CrossRefGoogle Scholar
  41. Fodor RV, Mukasa SB, Gomes CB, Cordani UG (1989) Ti-rich Eocene basaltic rocks, Abrolhos platform, offshore Brazil, 18 ° South: petrology with respect to South Atlantic magmatism. J Petrol 30:763–786CrossRefGoogle Scholar
  42. Fornero SA, Marins GM, Lobo JT, Freire AFM, Lima EF (2019) Characterization of subaerial volcanic facies using acoustic image logs: Lithofacies and log-facies of a lava-flow deposit in the Brazilian pre-salt, deepwater of Santos Basin. Mar Pet Geol 99:156–174CrossRefGoogle Scholar
  43. Foulger GR (2018) Origin of the South Atlantic igneous province. J Volcanol Geotherm Res 355:2–20CrossRefGoogle Scholar
  44. França R, Mohriak WU (2009) Tectônica de sal das bacias do Espírito Santo e Mucuri. In: W. Mohriak, P. Szatmari & S. M. C. Anjos (organizadores), Sal: Geologia e Tectônica. Editora Beca, São Paulo. 286–301Google Scholar
  45. Francheteau J, Le Pichon X (1972) Marginal fracture zones as structural framework of continental margins of South Atlantic Ocean. AAPG Bull 56(6):991–1007Google Scholar
  46. Fromm T, Jokat W, Ryberg T, Behrmann JH, Haberlan C, Weber M (2017) The onset of Walvis Ridge: plume influence at the continental margin. Tectonophysics 716:90–107CrossRefGoogle Scholar
  47. Galvão ILG, Castro DL (2017) Contribution of global potential field data to the tectonic reconstruction of the Rio Grande Rise in the South Atlantic. Mar Pet Geol 86:932–949CrossRefGoogle Scholar
  48. Gamboa LAP, Rabinowitz PD (1981) The Rio Grande fracture zone in the western South Atlantic and its tectonic implications. Earth Planet Sci Lett 52:410–418CrossRefGoogle Scholar
  49. Gamboa LAP, Rabinowitz PD (1984) The evolution of the Rio Grande rise in the Southwest Atlantic Ocean. Mar Geol 58:35–58CrossRefGoogle Scholar
  50. Gassmöller R, Dannberg J, Bredow E, Steinberger B, Torsvik TH (2016) Major influence of plume-ridge interaction, lithosphere thickness variations and global mantle flow on hotspot volcanism - the example of Tristan. -Geochemistry. G3 17(4):1454–1479Google Scholar
  51. Geraldes MC, Motoki A, Costa A, Mota CE, Mohriak WU (2012) Geochronology (Ar/Ar and K–Ar) of the South Atlantic post-break-up magmatism. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate Divergent Margins, vol 369. Geological Society, London, pp 41–74 Special PublicationsGoogle Scholar
  52. Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell JG (1995) The late cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic potassic magmatism in SE Brazil. J Petrol 36:189–229CrossRefGoogle Scholar
  53. Gibson SA, Thompson RN, Weska RK, Dickin AP (1997) Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath western Brazil. Contrib Mineral Petrol 126:303–314CrossRefGoogle Scholar
  54. Gladczenko TP, Hinz K, Eldholm O, Meyer H, Neben S, Skogseid J (1997) South Atlantic volcanic margins. J Geol Soc Lond 154:465–470CrossRefGoogle Scholar
  55. Gordon AC, Mohriak WU (2015) Seismic volcano-stratigraphy in the basaltic complexes on the rifted margin of Pelotas Basin, Southeast Brazil, in Post PJ, Coleman J, Rosen NC, Brown DE, Roberts TA, Kahn P and Rowan M (eds.), Petroleum systems in “rift” basins, 34th Annual GCSSEPM Foundation Perkins-Rosen Research Conference, Expanded Abstracts. 748–786CrossRefGoogle Scholar
  56. Graça MC, Kusznir N, Stanton NSG (2018) Crustal thickness mapping of the central South Atlantic and the geodynamic development of the Rio Grande Rise and Walvis Ridge. Mar Pet Geol. CrossRefGoogle Scholar
  57. Guimarães IP, Sial AN, Silva Filho AF (1982) Petrologia e geoquímica da província alcalina terciária Fortaleza, Ceará, in: Congresso Brasileiro de Geologia, 32, Salvador. 1982. Anais... Salvador, SBG. p. 577-588Google Scholar
  58. Hall SA, Bird DE, McLean DJ, Towle PJ, Grant JV, Danque HA (2018) New constraints on the age of the opening of the South Atlantic basin. Mar Pet Geol 95:50–66CrossRefGoogle Scholar
  59. Heine C, Zoethourt J, Muller RD (2013) Kinematics of the South Atlantic rift. Solid Earth 4:215–253. CrossRefGoogle Scholar
  60. Hinz K (1981) A hypothesis on terrestrial catastrophes: wedges of very thick oceanward dipping layers beneath passive continental margins. Geol Jahrb E-22:3–28Google Scholar
  61. Hoernle K, Rohde J, Hauff F, Garbe-Schonberg D, Homrighausen S, Werner R, Morgan JP (2015) How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat Commun 6(1):1–10CrossRefGoogle Scholar
  62. Homrighausen S, Hoernle K, Hauff F, Wartho J-A, van den Bogaard P, Garbe-Schonberg D (2019) New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin. Geochim Cosmochim Acta 245:16–34CrossRefGoogle Scholar
  63. Jeffery AJ, Gertisser R (2018) Peralkaline felsic Magmatism of the Atlantic Islands. Front Earth Sci 6:145 1–42CrossRefGoogle Scholar
  64. Jokat W, Reents S (2017) Hotspot volcanism in the southern South Atlantic: geophysical constraints on the evolution of the southern Walvis ridge and the discovery seamounts. Tectonophysics 716:77–89CrossRefGoogle Scholar
  65. Koopmann H, Schreckenberger B, Franke D, Becker K, Schnabel M (2014) The late rifting phase and continental break-up of the southern South Atlantic: the mode and timing of volcanic rifting and formation of earliest oceanic crust. In: Wright TJ, Ayele A, Ferguson DJ, Kidane T, Vye-Brown C (eds) Magmatic rifting and active volcanism, vol 420. Geological Society, London, Special Publications, pp 315–340Google Scholar
  66. Kumar N (1979) Origin of “paired” aseismic rises: Ceará and Sierra Leone rises in the equatorial, and the Rio Grande Rise and Walvis Ridge in the South Atlantic, Marine Geology, 30(3-4), 175–191CrossRefGoogle Scholar
  67. Leão ZMAN (2002) Abrolhos, BA - O complexo recifal mais extenso do Atlântico Sul. In: Schobbenhaus,C.; Campos,D.A. ; Queiroz,E.T.; Winge,M.; Berbert-Born,M.L.C. (Edits.) Sítios Geológicos e Paleontológicos do Brasil. 1. ed. Brasilia: DNPM/CPRM - Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP), 2002. 1:345-359Google Scholar
  68. Lima PRAS (1974) Geologia da Ilha de Cabo Frio,RJ, Anais do XXVIII Congresso Brasileiro de Geologia, Porto Alegre, Resumo das comunicações, Boletim n. 1: 176–181Google Scholar
  69. Lopes RP, Ulbrich MNC (2015) Geochemistry of the alkaline volcanic-subvolcanic rocks of the Fernando de Noronha archipelago, southern Atlantic Ocean. Braz J Geol 45(2):307–333CrossRefGoogle Scholar
  70. Macdonald D, Gomez-Perez I, Franzese J, Spalletti L, Lawve L, Gahagan I, Dalziel I, Thomas C, Trewin N, Hole M, Paton D (2003) Mesozoic break-up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Mar Pet Geol 20:287–308CrossRefGoogle Scholar
  71. Magee C, Maharaj SM, Wrona T, Jackson CAL (2015) Controls on the expression of igneous intrusions in seismic reflection data. Geosphere 11(4):1024–1041CrossRefGoogle Scholar
  72. Maia M, Sichel S, Briais A, Brunelli D, Ligi M, Ferreira N, Campos T, Mougell B, Brehme I, Hémond C, Motoki A, Moura D, Scalabrin C, Pessanha I, Alves E, Ayres A, Oliveira P (2016) Extreme mantle uplift and exhumation along a transpressive transform fault. Nat Geosci 9:619–623CrossRefGoogle Scholar
  73. Marzoli A, Melluso L, Morra V, Renne PR, Sgrosso I, D’Antonio M, Morais LD, Morais EAA, Ricci G (1999) Geochronology and petrology of cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paraná-Etendeka continental flood basalt province. J Geodyn 28:341–356CrossRefGoogle Scholar
  74. Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Tongwa AT (2000) The Cameroon Volcanic Line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J Petrol 41(1):87–109CrossRefGoogle Scholar
  75. Matte RR (2013) Sedimentologia e estratigrafia das ilhas de Santa Bárbara e Redonda, Arquipélago dos Abrolhos, sul da Bahia. Boletim de Geociencias da Petrobras 21(2):369–384Google Scholar
  76. Matthews KJ, Müller RD, Wessel P, Whittaker JM (2011) The tectonic fabric of the ocean basins. J Geophys Res 116(B12109) 28Google Scholar
  77. Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, Frese RRB, Gaina C, Golynsky S, Kucks R, Luhr H, Milligan P, Muller RD, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thebault E, Tontini FC (2009) EMAG2: a 2-arc min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochem Geophys Geosyst 10:1–12. CrossRefGoogle Scholar
  78. McDermott C, Lonergan L, Collier JS, McDermott KG, Bellingham P (2018) Characterization of seaward-dipping reflectors along the South American Atlantic margin and implications for continental breakup. Tectonics 37:3303–3327CrossRefGoogle Scholar
  79. Meisling KE, Cobbold PR, Mount VS (2001) Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bull 11:1903–1924Google Scholar
  80. Mello MR, Azambuja Filho NC, Bender AA, Barbanti SM, Mohriak W, Schmitt P, Jesus CLC (2013) The Namibian and Brazilian southern South Atlantic petroleum systems: are they comparable analogues? In: Mohriak, W. U., Danforth, A., Post, P. J., Brown, D. E., Tari, G. C., Nemcok, M. & Sinha, S. T. (eds) Conjugate Divergent Margins. Geological Society, London, Special Publications 369:249–266Google Scholar
  81. Mendonça PMM, Spadini AR, Milani EJ (2004) Exploração na Petrobras: 50 anos de sucesso. Boletim de Geociências da Petrobras, Rio de Janeiro 12(1):9–59Google Scholar
  82. Mizusaki AMP, Mohriak WU (1992) Sequências vulcano-sedimentares na região da plataforma continental de Cabo Frio, RJ. Anais do XXXVII Congresso Brasileiro de Geologia - Resumos Expandidos, São Paulo, SP, v. 2, p. 468–469Google Scholar
  83. Mizusaki AMP and Thomaz Filho A. (2004) O magmatismo pós-Paleozóico no Brasil. In: V. Mantesso-Neto, A. Bartorelli, C.D.R. Carneiro and B.B. Brito-Neves (eds.), Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida, Beca Produções Culturais Ltda., São Paulo, Cap. XVII, p. 281–291Google Scholar
  84. Mizusaki AMP, Mohriak WU (1992) Sequências vulcano-sedimentares na região da plataforma continental de Cabo Frio, RJ. Anais do XXXVII Congresso Brasileiro de Geologia - Resumos Expandidos, São Paulo, SP 2:468–469Google Scholar
  85. Mizusaki AMP, Thomaz-Filho A, Milani EJ, Césero P (2002) Mesozoic and Cenozoic igneous activity and its tectonic control in northeastern Brazil. J S Am Earth Sci 15(2):183–198CrossRefGoogle Scholar
  86. Mohriak WU 2001. Salt tectonics, volcanic centers, fracture zones and their relationship with the origin and evolution of the South Atlantic Ocean: geophysical evidence in the Brazilian and West African margins. 7 th International Congress of the Brazilian Geophysical Society, Salvador - Bahia – Brazil, October 28–31, 2001, Expanded Abstract 1594–1597Google Scholar
  87. Mohriak WU (2003) Bacias Sedimentares da Margem Continental Brasileira. In: L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti, J. H. Gonçalves (eds.), Geologia, Tectônica e Recursos Minerais do Brasil, Capítulo III, p. 87–165, CPRM, BrasíliaGoogle Scholar
  88. Mohriak WU (2004) Recursos energéticos associados à ativação tectônica Mesozoico-Cenozoica da América do Sul. In: V. Mantesso – Neto, A. Bartorelli, C.D.R. Carneiro and B.B. Brito-Neves (eds.), Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida, Beca Produções Culturais Ltda., São Paulo, capítulo XVIII, p. 293–318Google Scholar
  89. Mohriak WU (2006) Interpretação geológica e geofísica da Bacia do Espírito Santo e da região de Abrolhos: petrografia, datação radiométrica e visualização sísmica das rochas vulcânicas. Boletim de Geociências da Petrobras 14(1):133–142Google Scholar
  90. Mohriak WU, Fainstein R (2012) Phanerozoic regional geology of the Eastern Brazilian margin. In: Roberts D, Bally A (eds) Phanerozoic passive margins, Cratonic basins and global tectonic maps. Chapter, vol 7. Elsevier B.V., pp 223–282. CrossRefGoogle Scholar
  91. Mohriak WU, Torres JC (2017) Levantamentos geofísicos para a delimitação da margem continental brasileira, Revista USP, São Paulo, 113:59–80Google Scholar
  92. Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) (1995) Conjugate Divergent Margins, vol 369. Geological Society, London, Special Publications, pp 249–266Google Scholar
  93. Mohriak WU, Nemcok M, Enciso G (2008) South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of SE Brazil. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana pre-Cenozoic correlations across the South Atlantic region, vol 294. Geological Society, London, Special Publications, pp 365–398Google Scholar
  94. Mohriak WU, Nóbrega M, Odegard ME, Gomes BS, Dickson WG (2010) Geological and geophysical interpretation of the Rio Grande Rise, south-eastern Brazilian margin: extensional tectonics and rifting of continental and oceanic crusts. Pet Geosci 16:231–245CrossRefGoogle Scholar
  95. Mohriak WU, Fainstein R (2012) Phanerozoic regional geology of the Eastern Brazilian margin. In: Roberts D, Bally A (eds) Phanerozoic passive margins, Cratonic basins and global tectonic maps. Elsevier B.V 1(7):223–282Google Scholar
  96. Morgan WJ (1983) Hot-spot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139CrossRefGoogle Scholar
  97. Motoki A, Motoki KF (2013) Gravimetric structure and growth history of the volcanic seamounts of the Vitória-Trindade chain, state of Espírito Santo, Brazil, based on the satellite-derived data, 13th International Congress of the Brazilian Geophysical Society. Abstracts, Rio de Janeiro, Brazil, pp 1707–1712Google Scholar
  98. Motoki A, Sichel SE, Campos TFC, Vargas T, Soares R and Motoki KF (2010) Morfologia abyssal em torno do Arquipélago de São Pedro e São Paulo, Oceano Atlântico Equatorial, e sua relação ao tectonismo de soerguimento ativo. Revista de Geografia. Recife: UFPE – DCG/NAPA, v. especial VIII SINAGEO, n. 2, Set. 2010, p.318–330Google Scholar
  99. Motoki A, Motoki KF, Melo DP (2012) Caracterização da morfologia submarina da Cadeia Vitória-Trindade e áreas adjacentes, ES, com base na batimetria predita do TOPO versão 14.1. Revista Brasileira de Geomorfologia 13(2):151–170CrossRefGoogle Scholar
  100. Motoki KF, Motoki A, Sichel SE and Campos TFC (2013) Exumação do manto na cadeia peridotítica de São Pedro e São Paulo, Oceano Atlântico Equatorial: Protrusão de serpentina, megamullion ou compressão tectônica ? 13th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, August 26–29, 2013. Abstracts CD, sbgf_4163, 6 pGoogle Scholar
  101. Motoki KF, Motoki A, Sichel SE (2014) Gravimetric structure for the abyssal mantle massif of Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean, and its relation to active uplift. Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences) 86(2):571–588CrossRefGoogle Scholar
  102. Moulin M, Aslanian D, Unternehr P (2010) A new starting point for the South and Equatorial Atlantic Ocean. Earth Sci Rev 98:1–37CrossRefGoogle Scholar
  103. Müller RD, Royer JY, Lawver LA (1993) Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21(3):275–278CrossRefGoogle Scholar
  104. Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:Q04006. CrossRefGoogle Scholar
  105. Mutter JC, Talwani M, Stoffa PL (1982) Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea-floor spreading”. Geology 10:353–357CrossRefGoogle Scholar
  106. O’Connor JM, Duncan RA (1990) Evolution of the Walvis Ridge-Rio Grande Rise hot spot system: implications for African and South American plate motions over plumes. J Geophys Res 95(B11):17,475–17,502CrossRefGoogle Scholar
  107. O’Connor JM, Jokat W (2015) Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in the Walvis Ridge. Geology 43(8):715–718CrossRefGoogle Scholar
  108. O’Connor JM, Roex AP (1992) South Atlantic hot spot plume systems: 1. Distribution of volcanism in time and space. Earth Planet Sci Lett 113:343–364CrossRefGoogle Scholar
  109. Ojeda HAO (1982) Structural framework, stratigraphy, and evolution of Brazilian marginal basins. AAPG Bull 66(6):732–749Google Scholar
  110. Oliveira LC, Oliveira RMAG, Pereira E (2018) Seismic characteristics of the onshore Abrolhos magmatism, East-Brazilian continental margin. Mar Pet Geol 89:488–499CrossRefGoogle Scholar
  111. Oreiro SG, Cupertino JA, Szatmari P, Thomaz Filho A (2008) Influence of pre-salt alignments in post-Aptian magmatism in the Cabo Frio High and its surroundings, Santos and Campos basins, SE Brazil: an example of non-plume-related magmatism. J South Am Earth Sci 25:116–131CrossRefGoogle Scholar
  112. Paton DA, Pindell J, McDermott K, Bellingham P, Horn B (2017) Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: insights from the South Atlantic. Geology 45(5):439–442CrossRefGoogle Scholar
  113. Peate DW (1997) The Parana-Etendeka Province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. American Geophysical Union, Washington, D.C., pp 217–245Google Scholar
  114. Pérez-Díaz L, Eagles G (2014) Constraining South Atlantic growth with seafloor spreading data. Tectonics 33. CrossRefGoogle Scholar
  115. Pérez-Díaz L and Eagles G (2017) South Atlantic paleobathymetry since early Cretaceous, Nat Sci Rep, 7, 11819, 1–16Google Scholar
  116. Perlingeiro G, Vasconcelos PM, Knesel KM, Thiede DS, Cordani U (2013) 40Ar/39Ar geochronology of the Fernando de Noronha archipelago and implications for the origin of alkaline volcanism in the NE Brazil. J Volcanol Geotherm Res 249:140–154CrossRefGoogle Scholar
  117. Peyve AA (2010) Tectonics and Magmatism in Eastern South America and the Brazil Basin of the Atlantic in the Phanerozoic. Geotectonics 44(1):60–75CrossRefGoogle Scholar
  118. Pires GLC, Bongiolo EM (2016) The nephelinitic–phonolitic volcanism of the Trindade Island (South Atlantic Ocean): review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites. J S Am Earth Sci 72:49–62. CrossRefGoogle Scholar
  119. Pires GLC, Bongiolo EM, Geraldes MC, Renac C, Santos AC, Jourdan F, Neumann R (2016) New 40Ar/39Ar ages and revised 40K / 40Ar data from nephelinitic–phonolitic volcanic successions of the Trindade Island (South Atlantic Ocean). J Volcanol Geotherm Res 327:531–538CrossRefGoogle Scholar
  120. Planke S, Symonds PA, Alvestad E, Skogseid J (2000) Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. J Geophys Res 105(B8):19,335–19,351CrossRefGoogle Scholar
  121. Quirk DG, Hertle M, Jpeppesen JW, Raven M, Mohriak WU, Kann DJ, Norgaard M, Howe MJ, Hsu D, Coffey B, Mendes MP (2013) Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate divergent margins, vol 369. Geological Society, London, Special Publications, pp 185–214Google Scholar
  122. Renne PR, Ernesto M, Pacca IG, Coe RS, Glen JM, Prévot M, and Perrin M (1992) The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science 258:975–979CrossRefGoogle Scholar
  123. Renne, PR, Glen JM, Milner SC and Duncan AR (1996) Age of Etendeka flood volcanism and associated intrusions in southwestern Africa. Geology 24(7):659–662CrossRefGoogle Scholar
  124. Ribeiro, A. C., C. Riccomini, and J. A. D. Leite (2018), Origin of the largest South American transcontinental water divide, Nature Scientific Reports, 8:17144Google Scholar
  125. Richards MA, Duncan RA, Courtillot VE (1989) Flood basalts and hot-spot tracks: plume heads and tails. Science 246:103–107CrossRefGoogle Scholar
  126. Rohde JK, van den Bogaard P, Hoernle K, Hauff F, Werner R (2013a) Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases. Tectonophysics 604:60–71CrossRefGoogle Scholar
  127. Rohde J, Hoernle K, Hauff F, Werner R, O’Connor J, Class C, Garbe-Schönberg D, Jokat W (2013b) 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology 41(3):335–338CrossRefGoogle Scholar
  128. Ryan WB, Coplan JO, Melkonian AK, Carbotte SM (2008) Using GeoMapApp as an analytical tool for the journey between data visualization and synthesis, Abstract IN43-1163, Fall Meeting. American Geophysical Union, San Francisco, CAGoogle Scholar
  129. Sadowski GR, Dias Neto CM (1981) O lineamento sismo-tectônico do Cabo Frio. Rev Bras Geosci 11(4):209–212CrossRefGoogle Scholar
  130. Sandwell DT, Garcia E, Soofi K, Wessel P, Smith WHF (2013) Towards 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899CrossRefGoogle Scholar
  131. Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. CrossRefGoogle Scholar
  132. Santos AC, Rodrigues SW, Geraldes MC, Garrido TCV (2015) Geology of Martin Vaz Island, South Atlantic, Brazil. J Maps 11(2):314–322. CrossRefGoogle Scholar
  133. Santos, AC, Mohriak WU, Geraldes MC, Santos WH, Ponte-Neto CF, Stanton N (2018) Compiled potential field data and seismic surveys across the Eastern Brazilian continental margin integrated with new magnetometric profiles and stratigraphic configuration for Trindade Island, South Atlantic, Brazil. International Geology Review 1–17. CrossRefGoogle Scholar
  134. Santos RV, Ganade CE, Lacasse CM, Costa ISL, Pessanha I, Frazão EP, Dantas EL, and Cavalcante JA (2019) Dating Gondwanan continental crust at the Rio Grande Rise, South Atlantic, Terra Nova 00:1–6. CrossRefGoogle Scholar
  135. Schmidt R, Schmincke H-U (2000) Seamounts and island building, in the encyclopedia of volcanoes, edited by H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer and J. Stix, Academic Press, 383-402Google Scholar
  136. Schmincke HU and Sumita M(1998) Volcanic evolution of Gran Canaria reconstructed from apron sediments: synthesis of Vicap project drilling. In:Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), 1998, Proceedings of the Ocean Drilling Program, Scientific Results 157(27):443–469Google Scholar
  137. Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270CrossRefGoogle Scholar
  138. Sichel SE, Motoki A, Campos TFC, Soares R, Motoki KF (2009) On-going uplift rate of the Saint Peter Saint Paul Peridotite Ridge, Equatorial Atlantic Ocean, base on geomorphologic analyses of wave-cut bench and 14 C dating for coral fossils, 11th International Congress of the Brazilian Geophysical Society, sbgf2009-226, Expanded Abstracts, 4ppGoogle Scholar
  139. Sichel SE, Motoki A, TFC C, Angel-Amaya J, Vargas T, Maia M, Baptista Neto JA, Koga MS, Motoki KF, LSA S, Gorini MA, Szatmari P (2011) Origin and characterization of the mantle rocks of the Saint Peter and Saint Paul Rocks, Equatorial Atlantic Ocean. Boletim de Geociências da Petrobras 20(1–2):97–128Google Scholar
  140. Skolotnev SG, Peive AA (2017) Composition, structure, origin, and evolution of off-axis linear volcanic structures of the Brazil Basin, South Atlantic. Geotectonics 51(1):53–73CrossRefGoogle Scholar
  141. Skolotnev SG, Peyve AA, Turko NN (2010) New data on the structure of the Vitoria–Trindade Seamount chain (Western Brazil Basin, South Atlantic). Dokl Earth Sci 431(2):435–440CrossRefGoogle Scholar
  142. Skolotnev SG, Bylinskaya ME, Golovina LA, Ipateva IS (2011) First data on the age of rocks from the central part of the Vitória–Trindade ridge (Brazil Basin, South Atlantic). Dokl Earth Sci 437(1):316–322CrossRefGoogle Scholar
  143. Sobreira JFF, França RL (2006) Um modelo tectono-magmático alternativo para a região do Complexo Vulcânico de Abrolhos. Boletim de Geociências da Petrobras 14(1):143–147Google Scholar
  144. Souza, KG, Fontana RL, Mascle J, Macedo JM, Mohriak WU, Hinz K (1993) The southern Brazilian margin: an example of a South Atlantic volcanic margin, Third International Congress of the Brazilian Geophysical Society, Rio de Janeiro, RJ, 7–11 November 1993, Sociedade Brasileira de Geologia, Rio de Janeiro, Abstracts, vol 2, pp. 1336–1341Google Scholar
  145. Stanton N, Kusznir N, Gordon A, Schmitt R (2019) Architecture and tectono-magmatic evolution of the Campos rifted margin: control of OCT structure by basement inheritance. Mar Pet Geol 100:43–59CrossRefGoogle Scholar
  146. Steinberger B (2000) Plumes in a convecting mantle' models and observations for individual hotspots. J Geophys Res 105(B5):11,127–11,152CrossRefGoogle Scholar
  147. Stica JM, Zalán PV, Ferrari AL (2014) The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná-Etendeka LIP in the separation of Gondwana in the South Atlantic. Mar Pet Geol 50:1–21CrossRefGoogle Scholar
  148. Teixeira W, Cordani UG, Menor EA, Teixeira MG, Linsker R (2003) Arquipélago Fernando de Noronha - O paraíso do vulcão. Terra Virgem, São PauloGoogle Scholar
  149. Thiede J (1977) Subsidence of aseismic ridges: evidence from sediments on Rio Grande Rise (Southwest Atlantic Ocean). Am Assoc Pet Geol Bull 61(6):929–940Google Scholar
  150. Thomaz Filho A, Rodrigues AL (1999) O Alinhamento de Rochas Alcalinas Poços de Caldas-Cabo Frio (RJ) e sua continuidade na Cadeia Vitória-Trindade. Rev Bras Geosci 29(2):189–194CrossRefGoogle Scholar
  151. Thomaz Filho A, Mizusaki AMP, Milani EJ, Cesero P (2000) Rifting and magmatism associated with the South America and Africa breakup. Rev Bras Geosci 30(1):017–019CrossRefGoogle Scholar
  152. Thomaz Filho A, Cesero P, Mizusaki AMP, Leão JG (2005) Hotspot volcanic tracks and their implications for South American Plate motion, Campos Basin (Rio de Janeiro State), Brazil. J S Am Earth Sci 18:383–389CrossRefGoogle Scholar
  153. Thomaz Filho A, Mizusaki AMP, Antonioli L (2008) Magmatismo nas bacias sedimentares brasileiras e sua influência na geologia do petróleo. Revista Brasileira de Geociências 38(2 - suplemento):128–137CrossRefGoogle Scholar
  154. Thompson G, Humphris S, Schilling JG (1983) Petrology and geochemistry of basaltic rocks from Rio Grande Rise, South Atlantic Deep-sea Drilling Project, LEG-72, HOLE-516F. Initial Rep Deep Sea Drill Proj 72(DEC):457–466Google Scholar
  155. Thompson RN, Gibson SA, Mitchell JG, Dickin AP, Leonardos OH, Brod JA, Greenwood JC (1998) Migrating cretaceous-Eocene magmatism in the Serra do Mar alkaline Province, SE Brazil: melts from the deflected Trindade mantle plume? J Petrol 39(8):1493–1526CrossRefGoogle Scholar
  156. Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177:1315–1333CrossRefGoogle Scholar
  157. Ulbrich MNC, Marques LS, Lopes RP (2004) As ilhas vulcânicas brasileiras: Fernando de Noronha e Trindade. In: Mantesso-Neto, V.; Bartorelli, A.; Carneiro, C. D. R.; Brito-Neves, B. B. (eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. Editora Beca, Chapter XXX1:514–555Google Scholar
  158. Ussami N, Chaves CAM, Marques LS, Ernesto M (2012) Origin of the Rio Grande RiseeWalvis Ridge reviewed integrating paleogeographic reconstruction, isotope geochemistry and flexural modelling. Geol Soc Lond Spec Publ 369:129–146CrossRefGoogle Scholar
  159. Watts AB, ten Brink US, Buhl P, Brocher TM (1985) A multichannel seismic study of lithospheric flexure across the Hawaiian – Emperor seamount chain. Nature 315:105–111CrossRefGoogle Scholar
  160. White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7730CrossRefGoogle Scholar
  161. Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? In: Storey BC, Alabaster T and Pankhurst RJ (eds), Magmatism and the Causes of Continental Break-up, Geological Society Special Publication, 68, 241–255.Google Scholar
  162. Xu W, Ruch J, Jónsson S (2015) Birth of two volcanic islands in the southern Red Sea. Nat Commun 6:7104. CrossRefGoogle Scholar
  163. Zhao D (2007) Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12:335–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of GeologyUniversidade do Estado do Rio De JaneiroRio de JaneiroBrazil

Personalised recommendations