The Santo Antônio Bank: a high-resolution seismic study of a deflected ebb-tidal delta located at the entrance of a large tropical bay, eastern Brazil

  • Ana Clara Coni e Mello
  • José Maria Landim DominguezEmail author
  • Luiz Antonio Pereira de Souza


The Santo Antônio Bank (SAB) is a large sand accumulation on the inner continental shelf of Salvador City, next to Todos os Santos Bay (TSB) entrance, eastern Brazilian coast. Since the sixteenth century, chroniclers report this feature as a navigational hazard. Previous studies have tried to determine the origin and volume of sands stored within this feature without success. In the present study, high-resolution shallow seismic surveys were used to investigate the architecture, origin, and evolution of the SAB. One hundred seventy kilometers of high resolution shallow seismic lines was acquired during December 2014 and February 2015 using a Meridata® sparker system operating on frequencies between 0.3 and 1.5 kHz, with a maximum 200 J of energy. Three major stratigraphic units were identified: the bedrock, a transgressive unit, and a highstand unit. The bedrock comprises sedimentary rocks of the Northern Camamu Sedimentary Basin and high-grade metamorphic rocks of the Precambrian basement. The transgressive unit is interpreted as the result of deposition in an estuarine environment infilling incised valleys. The highstand unit represents the SAB itself. A well-preserved proto-bank exists at the core of the SAB marking the early stages of bank development. This proto-bank drowned in place possibly during the 8.2-ka event. Present-day SAB and tidal prism volumes show that the bank reached a maturity phase of development. The volume of siliciclastic sands stored in the SAB is 5.98 × 108 m3. The SAB is potentially a major source of sands for beach nourishment for the urban beaches of the city of Salvador and metropolitan area, thus increasing the resilience of the city to future sea-level rises.



Ana Clara Coni e Mello, José Maria Landim Dominguez, and Luis Antonio Pereira de Souza thank CNPq, respectively, for their Master’s and Research Productivity fellowships. The authors also thank the Instituto de Pesquisas Tecnológicas de São Paulo (IPT) and the New Talents (NOVOS TALENTOS) program. The comments of two anonymous reviewers helped to improve quality of the manuscript.

Funding information

This study is a contribution of inctAmbTropic—Brazilian National Institute of Science and Technology for Tropical Marine Environments, inctAmbTropic, CNPq/FAPESB Processes: 565054/2010-4, 8936/2011 and 465634/2014-1.


  1. Abdul NA, Mortlock RA, Wright JD, Fairbanks RG (2016) Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata. Paleocenography 31(2):330–344. CrossRefGoogle Scholar
  2. Ashley GM (1990) Classification of large-scale subaqueous bedforms a new look at an old problem. J Sediment Petrol 60-1:160–172. CrossRefGoogle Scholar
  3. Baak JA (1936) Regional petrology of the southern North Sea. Veenman & Zonen, Wageningen. Netherlands. CrossRefGoogle Scholar
  4. Barbosa JF, Gomes LCC, Dominguez JML, Cruz SAS, Souza JS (2005) Petrografia e Litogeoquimica das rochas da arte Oeste do Alto de Salvador, Bahia. Rev Bras Geocienc 35:9–22 ISSN 0375-7536CrossRefGoogle Scholar
  5. Bard E, Hamelin B, Delanghe-Sabatier D (2010) Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327:1235–1237. CrossRefGoogle Scholar
  6. Berné S, Trentesaux A, Stolk A, Missiaen T, de Batist M (1994) Architecture and long term evolution of a tidal sandbank: the Middelkerke Bank (southern North Sea). Mar Geol 121:57–72. CrossRefGoogle Scholar
  7. Berné S, Marsset T, Lericolais G, Bourillet JF, de Batist M, Reynaud JY, Tessier B (1996) Origin of some offshore sand bodies around France. Geo-Eco-Marina. Proc Intern Workshop on “Fluvial-Marine Interactions” 56-76. Romania.Google Scholar
  8. Berné S, Vagner P, Guichard F, Lericolais G, Liu Z, Trentesaux A, Yin P, Yi H (2002) Pleistocene forced regressions and tidal sand ridges in the East China Sea. Mar Geol 188:293–315. CrossRefGoogle Scholar
  9. Boski T, Bezerra FHR, de Fatima PL, Souza AM, Maia RP, Lima-Filho FP (2015) Sea-level rise since 8.2 ka recorded in the sediments of the Potengi-Jundiai Estuary, NE Brasil. Mar Geol 365:1–13. CrossRefGoogle Scholar
  10. Cirano M, Lessa GC (2007) Oceanographic characteristics of Baía De Todos os santos, Brazil. Rev Bras Geofis 25:363–387. CrossRefGoogle Scholar
  11. Cooper JAG, Meireles RP, Green AN, Klein AHF, Toldo EE (2018) Late Quaternary stratigraphic evolution of the inner continental shelf in response to sea-level change, Santa Catarina, Brazil. Mar Geol 397:1–14CrossRefGoogle Scholar
  12. Degrendele K, Roche M, Schotte P, Van Lancker V, Bonne W (2010) Morphological evolution of the Kwinte Bank central depression before and after the cessation of aggregate extraction. J Coast Res SI 51:77–86p Google Scholar
  13. Deschamps P, Durand N, Bard E, Hamelin B, Camoin G, Henderson TGM, Okuno J, Yokoyama Y (2012) Ice-Sheet Collapse and sea-level rise at the Bolling warming 14600 years ago. Nature 483:559–564. CrossRefGoogle Scholar
  14. DHI 2013. Porto Sul - Impacto costeiro e gerenciamento de sedimento. Estudos de Modelagem. 53p (Internal Report).Google Scholar
  15. Dominguez JML, (2015) The Todos os Santos Bay an ephemeral high-stand feature incised into an aborted Cretaceous rift. In: Bianca Carvalho Vieira; André Augusto Rodrigues Salgado; Leonardo José Cordeiro Santos. (Org.) World Geomorphol Landsc. 1ed. Dordrecht, Springer Netherlands, pp 55-63Google Scholar
  16. Dominguez JML, Bittencourt ACSP (2009) Geologia. In Hatje V, Andrade JB (ed) Baía de Todos os Santos - Aspectos Oceanográficos. Salvador. EdUFBA. pp 25-67 ISBN 978-85-232-0597-3.Google Scholar
  17. Dominguez JML, Ramos JMF, Rebouças RC, Nunes AS, Melo LCF (2011) A Plataforma Continental do município de Salvador: Geologia, usos múltiplos e recursos minerais. Salvador: Co Baiana Pesqui Miner. Série Arquivos Abertos V. 37. ISBN - 978-85-85680-44-2.Google Scholar
  18. Dyer KR, Huntley DA (1999) The origin, classification and modelling of sand banks and ridges. Cont Shelf Res 19:1285–1330. CrossRefGoogle Scholar
  19. Eynde DV, Giardino A, Portilla J, Fettweis M, Francken F, Monbaliu J (2010) Modelling the effects of sand extraction, on sediment transport due to tides, on the Kwinte Bank. J Coast Res SI 51:101–116p Google Scholar
  20. Fontolan G, Pillon S, Delli Quadri F, Bezzi A (2007) Sediment storage at tidal inlets in northern Adriatic lagoons: Ebb-tidal delta morphodynamics, conservation and sand use strategies. Estuar Coast Shelf Sci 75:261–277. CrossRefGoogle Scholar
  21. Green AN, Cooper JA, Salzmann L (2014) Geomorphic and stratigraphic signals of postglacial meltwater pulses on continental shelves. Geology 42(2):151–154. CrossRefGoogle Scholar
  22. Harrison S, Smith DE, Glasser NF (2019) Late Quaternary meltwater pulse and sea level change. J Quat Sci 34:1–15. CrossRefGoogle Scholar
  23. Hicks DM, Hume TM (1996) Morphology and size of ebb-tidal deltas at natural inlets on open sea and pocket bay coasts, North Island, New Zealand. J Coast Res SI 12:47–63pGoogle Scholar
  24. Houbolt JJHC (1968) Recent sediments in the Southern Bight of the North Sea. In: Geol en Mijnbouw. s.n. v 47: 245-273.Google Scholar
  25. HYDROS CH2M HILL Consortium (2000) Modelamento e Avaliação Ambiental/ Technical Report – hydrodynamical modelling of BTS – Final Revision No RT–257-04-GR-003-RF.Google Scholar
  26. Kendall RA, Mitrovica JX, Milne GA, Tornqvist T, Li Y (2008) The sealevel fingerprint of the 8.2 ka climate event. Geology 36:423–426. CrossRefGoogle Scholar
  27. Lessa GC, Bittencourt ACSP, Brichta A, Dominguez JML (2000) A reevaluation of the Late Quaternary Sedimentation in Todos os Santos Bay (BA), Brazil. An Acad Bras Cienc 72:1–18 CrossRefGoogle Scholar
  28. Lessa GC, Dominguez JML, Bittencourt ACSP, Brichta A (2001) The tides and tidal circulation of Todos os Santos Bay, northeast Brazil: a general characterization. An Acad Bras Cienc 73:244–261. CrossRefGoogle Scholar
  29. Lessa GC, Cirano M, Genz F, Tanajura CAS, Silva RR (2009) Oceanografia Física. In Hatje V, Andrade JB (ed) Baía de Todos os Santos - Aspectos Oceanográficos. Salvador. EdUFBA. pp 67-121 ISBN 978-85-232-0597-3.Google Scholar
  30. Li CX, Zhang JQ, Fan D, Deng B (2001) Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Mar Geol 173: 97–120. Scholar
  31. Macedo MHF (1977) Estudo Sedimentológico da Baía de Todos os Santos. Salvador.75p. (Dissertação, Universidade Federal da Bahia).Google Scholar
  32. Magnavita LP, Davison I, Kuznir NJ (1994) Rifting, erosion and uplift history of the Recôncavo-Tucano-Jatobá Rift, Northeast Brazil. Tecton Washington 13(2):367–388. CrossRefGoogle Scholar
  33. Magnavita LP, Silva RR, Sanches CP (2005) Guia de Campo da Bacia do Recôncavo, NE do Brasil. Bol Geocienc Petrobras 13:301–334Google Scholar
  34. Marsset T, Tessier B, Reynaud JY, De Batist M, Plagnol C (1999) The Celtic Sea banks: an example of sand body analysis from very high-resolution seismic data. Mar Geol 158:89–109. CrossRefGoogle Scholar
  35. Mello ACC (2016) O Banco de Santo Antônio: Um estudo de sísmica de alta resolução em um delta de maré vazante localizado na entrada de uma grande baía tropical, costa leste do Brasil. Dissertação na Universidade Federal da Bahia.Google Scholar
  36. Powell MA, Thieke RJ, Mehta AJ (2006) Morphodynamic relationships for ebb and flood delta volumes at Florida’s tidal entrances. Oc Dynam 56:295–307. CrossRefGoogle Scholar
  37. Rebouças RC (2010) Sedimentação holocênica da plataforma continental de Salvador-BA. Tese na Universidade Federal da BahiaGoogle Scholar
  38. Rodriguez AB, Simms AR, Anderson JB (2010) Bay-head deltas across the northern Gulf Mexico back step in response to the 8.2 ka cooling event. Quat Sci Rev 29:3983–3993. CrossRefGoogle Scholar
  39. Soares ASQ, Dominguez JML, Campos RHS, Ribeiro RF, Santos IO (2018) Geometria do embasamento rochoso da BTS utilizando sísmica de alta resolução. VII Simpósio Brasileiro de Geofísica, Proceedings. Not sequentially numberedGoogle Scholar
  40. Swift DJP (1975) Tidal sand ridges and Shoal-Retreat Massifs. Mar Geol 18:105–134. CrossRefGoogle Scholar
  41. Thomas E, Wilff EW, Mulvaney R, Steffersen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007) The 8.2 ka event from Greenland ice cores. QuatSci Rev 26:70–81. CrossRefGoogle Scholar
  42. Trentesaux A, Stolk A, Berné S (1999) Sedimentology and stratigraphy of a tidal sand bank in the southern North Sea. Mar Geol 159:253–272 CrossRefGoogle Scholar
  43. Walton TL, Adams WD (1976) Capacity of inlet outer bars to store sand. In:Proceedings of the 15th Coastal Eng Conf. Amer. Soc Civil Eng, New York, 1919-1937. CrossRefGoogle Scholar
  44. Wang Y, Zhang Y, Zou X, Zhu D, Piper (2012) The sand ridge field of the South Yellow Sea: origin by river–sea interaction. Mar Geol:291–294. CrossRefGoogle Scholar
  45. Zecchin M, Caffau M, Catuneanu O, Lenaz D (2017) Discrimination between wave-ravinement surfaces and bedset boundaries in Pliocene shallow-marine deposits, Crotone Basin, southern Italy: an integrated sedimentological, micropaleontological and mineralogical approach. Sediment 64:1755–1791CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Estudos Costeiros, INCT AmbTropicUniversidade Federal da Bahia - Rua Barão de JeremoaboSalvadorBrazil
  2. 2.Instituto de Pesquisas Tecnológicas de São Paulo (IPT).São PauloBrazil

Personalised recommendations