Advertisement

Geo-Marine Letters

, Volume 39, Issue 6, pp 513–520 | Cite as

Sand size variability inside the hopper of a trailing suction dredger for beach nourishment purposes

  • P. PoulletEmail author
  • J.J. Muñoz-Perez
  • P. Lopez
  • S. García-Lopez
  • R. Martell
  • R. Silva
  • L. Moreno
Technical Paper
  • 47 Downloads

Abstract

Research about the variability of sand size inside the hopper of a trailing suction dredger has yet to be done, despite its importance for beach nourishment projects. In this study, several samples were taken using different methodologies during dredging for a particular case of beach nourishment on board one dredger. Sampling was carried out with a tube core and a Van Veen grab at the surface when the hopper was full of sand. The results showed problems with the Van Veen grab, the standard methodology used for sampling aboard a dredger. This method should be reconsidered in the future because surface samples were not representative of the whole hopper due to the bias of higher percentage of shell pieces. According to the results, the core tubes introduced by percussion were the only useful method in determining average sand parameters closer to the values obtained for the borrow site. Moreover, cores also showed a linear correlation between sand size and depth: D50 increased 20% from the surface to 1 m depth; this is a sixth of the hopper depth of this study case. Regrettably, the manual percussion procedure could not reach depths greater than 1 m.

Notes

References

  1. Aboitiz A, Tejedor B, Munoz JJ, Abarca JM (2008) Relation between daily variations in sea level and meteorological forcing in Sancti Petri Channel (SW Spain). Cienc Mar 34(4):491–501CrossRefGoogle Scholar
  2. Anfuso G, Benavente J (2006) Approximation to the classification and morphodynamic behaviour of the beaches between Chipiona and Rota (Cádiz, SW Spain). Cienc Mar 32(4):605–616Google Scholar
  3. CUR (1987). Manual on Artificial Beach nourishment, Centre for Civil Engineering Research, Codes and Specifications, Report n. 130Google Scholar
  4. Dean RG (1991) Equilibrium beach profiles: characteristics and applications. J Coast Res 7:5–84Google Scholar
  5. Dean, R.G. (2003). Beach nourishment: theory and practice. Advanced series on ocean engineering. World scientific pub. Co., river edge, New Jersey (399 pp.)Google Scholar
  6. Esgemar (1991). Marine geophysical study between the Cape of Trafalgar and the Carnero Promontory. Direccion General de Costas. Ministerio de Obras Publicas y Transportes, Madrid, Ref 00–373, 5 volsGoogle Scholar
  7. Gallop, S. L., Collins, M., Pattiaratchi, C. B., Eliot, M. J., Bosserelle, C., Ghisalberti, M., Collins, L.B., Eliot, I., Erftemeijer, P. L. A., Larcombe, P., Marigómez, I., Stul, T. and White, D. J. (2015). Challenges in transferring knowledge between scales in coastal sediment dynamics. Front Mar Sci 2 (82)Google Scholar
  8. Geomytsa (1991). Marine geophysical study between the Cape of Trafalgar and the Puerco Tower (Cadiz). Direccion General de Costas. Ministerio de Obras Publicas y Transportes, Madrid, Ref 00–371, 5 volsGoogle Scholar
  9. Gomez-Pina, G., Fages, L., Ramirez, J.L., Muñoz-Perez, J.J., Enriquez, J. (2007). A critical review of beach restoration projects in the northern coast of Cadiz (Spain) after thirteen years. Proc Coast Eng Conf 4167–4178Google Scholar
  10. Gravens MB, Emersole BA, Walton TL, Wise RA (2002) Beach fill design. In: Warp DL (ed) Coastal engineering manual, part 5 cap. 4, U.S. Army Corps of Engineers, WashingtonGoogle Scholar
  11. Hamm L, Capobianco M, Dette HH, Lechuga A, Spanhoff R, Stive MJF (2002) A summary of European experience with shore nourishment. Coast Eng 47:237–264CrossRefGoogle Scholar
  12. Hanson H, Brampton A, Capobianco M, Dette HH, Hamm L, Laustrup C, Lechuga A, Spanhoff R (2002) Beach nourishment projects, practices, and objectives—a European overview. Coast Eng 47:81–111CrossRefGoogle Scholar
  13. Houston JR (2013) The economic value of beaches—a 2013 update. Shore Beach 81:3–11Google Scholar
  14. Jimenez JA, Madsen OS (2003) A simple formula to estimate settling velocity of natural sediments. J Waterw Port Coast Ocean Eng 129(2):70–78CrossRefGoogle Scholar
  15. Karambas TV, Samaras AG (2014) Soft shore protection methods: the use of advanced numerical models in the evaluation of beach nourishment. Ocean Eng 92:129–136CrossRefGoogle Scholar
  16. Klein YL, Osleeb JP, Viola MR (2004) Tourism-generated earnings in the coastal zone: a regional analysis. J Coast Res 20:1080–1088Google Scholar
  17. Krumbein WC (1934) Size frequency distributions of sediments. J Sediment Petrol 4:65–77CrossRefGoogle Scholar
  18. Larson M, Kraus NC (1991) Mathematical modelling of the fate of beach fill. Coast Eng 16:83–114CrossRefGoogle Scholar
  19. MARM (2010). Instrucción Técnica para la Gestión Ambiental de las extracciones marinas para la obtención de arena. Ed. Ministerio de Medio Ambiente y Medio Rural y Marino, 30 pp.Google Scholar
  20. Miedema SA (2009) The effect of the bed rise velocity on the sedimentation process in hopper dredges. WEDA J Dredg 10(1):10–30Google Scholar
  21. Miedema S.A. and Vlasblom W.J. (1996). Theory for hopper sedimentation. 29th Annual Texas A&M Dredging Seminar. New Orleans, JuneGoogle Scholar
  22. Ministry of Environment (2003) Environmental impact study: use of Meca sandbank to Cadiz beach nourishment. Res Secretariat Environ BOE 108:17266–17270 (in Spanish)Google Scholar
  23. Muñoz-Perez JJ, Gutierrez-Mas JM, Parrado JM, Moreno L (1999) Sediment transport velocity by tracer experiment at Regla Beach (Spain). J Waterw Port Coast Ocean Eng 125(6):332–335CrossRefGoogle Scholar
  24. Muñoz-Perez JJ, Gutierrez-Mas JM, Moreno J, Español L, Moreno L, Bernabeu A (2003) A portable meter system for dry weight control in dredging hoppers. J Waterw Port Coast Ocean Eng 129(2):79–85CrossRefGoogle Scholar
  25. Muñoz-Perez, J.J., Roman-Sierra, J., Navarro-Pons, M., Neves, M.G., and del Campo, J.M. (2014). Comments on “Confirmation of beach accretion by grain-size trend analysis: Camposoto Beach, Cádiz, SW Spain” by E. Poizot et al. (2013). Geo-Mar Lett 34 (1), 75–78Google Scholar
  26. OSPAR Commision (2014). Guidelines for the management of dredged material at sea. Available at https://dredging.org/documents/ceda/downloads/environment-ospar-dmguidelines.pdf
  27. Pranzini E, Wetzel L, Williams A (2015) Aspects of coastal erosion and protection in Europe. J Coast Conserv 19:445–459.  https://doi.org/10.1007/s11852-015-0399-3 CrossRefGoogle Scholar
  28. Pranzini E, Anfuso G, Muñoz-Perez JJ (2018) A probabilistic approach to borrow sediment selection in beach nourishment projects. Coast Eng 139:32–35CrossRefGoogle Scholar
  29. Roman-Sierra J, Navarro M, Muñoz-Perez JJ, Gomez G (2011) Turbidity and other effects resulting from Trafalgar sandbank dredging and Palmar Beach nourishment. J Waterw Port Coast Ocean Eng 137(6):332–343CrossRefGoogle Scholar
  30. Roman-Sierra J, Muñoz-Perez JJ, Navarro-Pons M (2013) Influence of sieving time on the efficiency and accuracy of grain-size analysis of beach and dune sands. Sedimentology 60:1484–1497Google Scholar
  31. Roman-Sierra J, Muñoz-Perez JJ, Navarro-Pons M (2014) Beach nourishment effects on sand porosity variability. Coast Eng 83:221–232CrossRefGoogle Scholar
  32. Shao D, Gao W, Purnama A, Guo J (2015) Modeling dredging-induced turbidity plumes in the far field under oscillatory tidal currents. J Waterw Port Coast Ocean Eng 143(3):06016007CrossRefGoogle Scholar
  33. Soulsby RL (1997) Dynamics of marine sands. Thomas Telford, LondonGoogle Scholar
  34. Syvitski JPM (1991) Principles, methods, and application of particle size analysis. Cambridge University Press, New York, 368 ppCrossRefGoogle Scholar
  35. Trembanis AC, Pilkey OH (1999) Comparison of beach nourishment along the U.S. Atlantic, Great Lakes, Gulf of Mexico New England shorelines. Coast Manag 27:329–340CrossRefGoogle Scholar
  36. USACE (2002). Coastal engineering manual, V-4-24 EM 1110-2-1100. Part III. Coastal sediment processes. Webpage http://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/
  37. Van Ingen LW, Castro B (2017) Towards a green maritime technology. Terra et Aqua 149:18–27Google Scholar
  38. Van Rhee, C. (2002). On the sedimentation process in a trailing suction hopper dredger. PhD thesis, Technische Universiteit Delft (Netherlands)Google Scholar
  39. Velegrakis AF, Ballay A, Poulos S, Radzevicius R, Bellec V, Manso F (2010) European marine aggregates resources: origins, usage, prospecting and dredging techniques. J Coast Res 51:1–14Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Poullet
    • 1
    Email author
  • J.J. Muñoz-Perez
    • 2
  • P. Lopez
    • 2
  • S. García-Lopez
    • 2
  • R. Martell
    • 3
  • R. Silva
    • 4
  • L. Moreno
    • 5
  1. 1.Coastal Department in Atlantic-AndaluciaMinistry of EnvironmentCadizSpain
  2. 2.CASEMUniversity of CadizPuerto RealSpain
  3. 3.Comision Nacional para el Conocimiento y uso de la BiodiversidadCONABIOCiudad de MéxicoMexico
  4. 4.Instituto IngenieriaCiudad UniversitariaCiudad de MéxicoMexico
  5. 5.Universidad Politecnica de MadridMadridSpain

Personalised recommendations