Advertisement

Geo-Marine Letters

, Volume 38, Issue 4, pp 371–384 | Cite as

Morphotectonic development of the Ceará Terrace: a marginal ridge on the western side of the Romanche Fracture Zone in the Brazilian Equatorial Margin

  • João Fernando Pezza Andrade
  • M. P. Gomes
  • F. H. R. Bezerra
  • D. L. de Castro
  • H. Vital
Original
  • 118 Downloads

Abstract

The evolution of a rifted and sheared continental margin may control the formation of marginal ridges, which are prominent morphostructural features located at the extremities of fracture zones. We investigate the Ceará Terrace, a marginal ridge located at the western limit of the Romanche Fracture Zone in the Brazilian Equatorial Margin. Our data consist of 2000 km of 2D seismic lines parallel and orthogonal to the continental equatorial margin, as well as four exploratory wells. The Ceará Terrace has an evolution similar to that of the Ivory Coast-Ghana Ridge, the corresponding conjugate end of the Romanche Fracture Zone in the western African continental margin. The Ceará Terrace surface morphology displays an asymmetric ridge; the north slope is aligned to the Romanche Fracture Zone, related to a bathymetric step at ~ 850 m. The paleo relief represents a ridge consisting of a rift sequence (Lower Cretaceous) that is similar to the Ivory Coast-Ghana Ridge. This ridge is bounded by two half-grabens to the southeast associated with the reactivation of preexisting tectonic weakness zones related to the Precambrian Transbrasiliano Lineament. This structure was buried by a drift sequence, which comprises three sedimentary units: Unit 1, shale; unit 2, limestone that interfingers with shale and sandstone; and unit 3, limestone and shale. The fossil ridge is located near a seamount associated with important Oligocene volcanic units. Both conjugate marginal ridges were formed by a Late Albian to Cenomanian transpressional event (marked by folds and tectonic uplift) and flexural uplift due to erosion and thermal exchanges with oceanic spreading centers. Differences in the amplitude of uplift are related to the thermal influences of the distinct oceanic spreading centers. Furthermore, the results indicate that the studied area is still tectonically active.

Notes

Acknowledgments

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support through the IODP-CAPES Program (AUXPE Geohazards e Tectonica_88887.091714/2014-01) and scholarship to the first author. Thanks are also due to the Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) for providing the seismic and well datasets; to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research grants to F.H.R. Bezerra, D.L. de Castro, H. Vital (311413/2016-1); and to the Federal University of Rio Grande do Norte for the infrastructure required for the data processing.

References

  1. Almeida FFM, Carneiro CDR, Machado D Jr, Dehira L (1988) Magmatismo Pós- Paleozóico no Nordeste Oriental do Brasil. Rev Bras Geosci 18:451–462Google Scholar
  2. Antobreh AA, Faleide JI, Tsikalas F, Planke S (2009) Rift-shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data. Mar Pet Geol 26:345–368.  https://doi.org/10.1016/j.marpetgeo.2008.04.005 CrossRefGoogle Scholar
  3. Antunes AF, de Sá EFJ, Araújo RG d S, Lima Neto FF (2008) Caracterização tectonoestrutural do Campo de Xaréu (Sub-Bacia de Mundaú, Bacia do Ceará – NE do Brasil): abordagem multiescala e pluriferramental. Rev Bras Geosci 38:88–105CrossRefGoogle Scholar
  4. Attoh K, Brown L, Guo J, Heanlein J (2004) Seismic stratigraphic record of transpression and uplift on the Romanche transform margin, offshore Ghana. Tectonophysics 378:1–16.  https://doi.org/10.1016/j.tecto.2003.09.026 CrossRefGoogle Scholar
  5. Attoh K, Brown L, Haenlein J (2005) The role of Pan-African structures in intraplate seismicity near the termination of the Romanche fracture zone, West Africa. J Afr Earth Sci 43:549–555.  https://doi.org/10.1016/j.jafrearsci.2005.09.006 CrossRefGoogle Scholar
  6. Azevedo RP (1991) Tectonic evolution of Brazilian equatorial continental margin basins. University of LondonGoogle Scholar
  7. Basile C, Allemand P (2002) Erosion and flexural uplift along transform faults. Geophys J Int 151:646–653CrossRefGoogle Scholar
  8. Basile C, Mascle J, Popoff M, Bouillin JP, Mascle G (1993) The Ivory Coast-Ghana transform margin: a marginal ridge structure deduced from seismic data. Tectonophysics 222:1–19CrossRefGoogle Scholar
  9. Berndt C, Mjelde R, Planke S, Faleide JI (2001) Controls on the tectono-magmatic evolution of a volcanic transform margin: the Vøring transform margin, NE Atlantic. Mar Geophys Res 22:133–152CrossRefGoogle Scholar
  10. Bizzi LA, Schobbenhaus C, Vidotti RM, Gonçalves JH (2003) Bacias Sedimentares da Margem Continental Brasileira. In: Bizzi LA, Schobbenhaus C, Mohriak WU (eds) Geologia tectônica e recursos minerais do brasil. CPRM, pp 87–94Google Scholar
  11. Blarez E, Mascle J (1988) Shallow structures and evolution of the Ivory Coast and Ghana transform margin. Mar Pet Geol 5(1):54–64Google Scholar
  12. Brito Neves BB, Fuck RA, Pimentel MM, (2014) The Brasiliano collage in South America: a review. Braz J Geol 44(3):493–518Google Scholar
  13. Boillot G, Coulon C (1998) La déchirure continentale et l’ouverture océanique: géologie des marges passives. Overseas Publishers Association, AmsterdamGoogle Scholar
  14. Caby R (1989) Precambrian terranes of Benin-Nigeria and northeast Brazil and the Late Proterozoic south Atlantic fit. Geol Soc Am Spec Pap 230:145–158Google Scholar
  15. Castro AS (1992) Arcabouço estrutural e evolução tectônica da Sub-Bacia de Icaraí, Bacia do Ceará. Master’s thesis,Universidade Federal de Ouro Preto, Ouro Preto/MGGoogle Scholar
  16. Catuneanu O (2006) Principles of sequence stratigraphy. J Geo Mag 144(6):1031-1032.  https://doi.org/10.1017/S0016756807003627
  17. Condé VC, Lana CC, Pessoa C et al (2007) Bacia do Ceará. Boletim de Geociencias da Petrobras, Rio de JaneiroGoogle Scholar
  18. Cordani UG, Araujo CG, Pimentel M, Fuck R (2013) The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Braz J Geol 43:583–597.  https://doi.org/10.5327/Z2317-48892013000300012 CrossRefGoogle Scholar
  19. Costa IG, Beltrami CV, Alves LEM (1990) A Evolução Tectono-sedimentar e o Habitat do Óleo da Bacia Ceará. Rio de JaneiroGoogle Scholar
  20. Cunha F (2007) Condicionamento Estrutural das Zonas de Cisalhamento da Região de Forquilha, Domínio Ceará Central: Uma Abordagem Integrada de Sensoriamento Remoto e Geologia Estrutural. Tese de doutorado, Universidade Federal do Rio Grande do Norte. 174pGoogle Scholar
  21. Dailly P (2000) Tectonic and stratigraphic development of the Rio Muni Basin, Equatorial Guinea: the role of transform zones in Atlantic Basin evolution. Atl Rift Cont Margins 115:105–128.  https://doi.org/10.1029/GM115p0105 CrossRefGoogle Scholar
  22. Davison I, Faull T, Greenhalgh J, O Beirne E, Steel I (2016) Transpressional structures and hydrocarbon potential along the Romanche Fracture Zone: a review. Geol Soc Lond Spec Publ 431:235–248.  https://doi.org/10.1144/SP431.2 CrossRefGoogle Scholar
  23. de Castro DL, Bezerra FHR, Sousa MOL, Fuck RA (2011) Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data. J Geodyn 54:29–42.  https://doi.org/10.1016/j.jog.2011.09.002 CrossRefGoogle Scholar
  24. de Castro DL, Fuck RA, Phillips JD, Vidotti RM, Bezerra FHR, Dantas EL (2014) Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics 614:128–145.  https://doi.org/10.1016/j.tecto.2013.12.009 CrossRefGoogle Scholar
  25. Destro N, Szatmari P, Ladeira EA (1994) Post-Devonian transpressional reactivation of a Proterozoic ductile shear zone in Ceani, NE Brazil. J Struct Geol 16:35–45CrossRefGoogle Scholar
  26. Edwards RA, Whitmarsh RB, Scrutton RA (1997) The crustal structure across the transform continental margin off Ghana, eastern equatorial Atlantic. J Geophys Res 102:747–772.  https://doi.org/10.1029/96JB02098 CrossRefGoogle Scholar
  27. General Bathymetric Chart of the Oceans (2014) Intergovernmental oceanographic commission and the international hydrographic organization. General bathymetric chart of the oceans (GEBCO) digital atlas. British oceanographic data centre, LiverpoolGoogle Scholar
  28. Kearey P, Klepeis KA, Vine FJ (2013) Continental transforms and strike-slip faults. In: global Tectonics pp 210–248Google Scholar
  29. Lorenzo JM (1997) Sheared continent-ocean margins: an overview. Geo-Mar Lett 17:110–118CrossRefGoogle Scholar
  30. Lorenzo JM, Mutter JC, Larson RL, Northwest Australia Study Group (1991) Development of the continent ocean transform boundary of the southern Exmouth Plateau. Geology 19:843–846CrossRefGoogle Scholar
  31. Manscle J, Blarez E (1987) Evidence for transform margin evolution from the Ivory Coast-Ghana continental margin. Nature 330:1987Google Scholar
  32. Matos RMD (2000) Tectonic evolution of the equatorial South Atlantic The Brazilian and West African Equatorial margins comprise America In: Atlantic Rifts and Continental Margins, pp 331–354.  https://doi.org/10.1029/GM115p0331
  33. Mitchum RM, Vail PR, Thompson S (1977) Seismic stratigraphy and global changes of sea level, part 2: the depositional sequence as a basic unit for stratigraphic analysis. Seism Stratigr Appl to Hydrocarb Explor. AAPG Mem 26:53–62Google Scholar
  34. Mizusaki AMP, Thomaz Filho A, Milani EJ, Césero P (2002) Mesozoic and Cenozoic igneous activity and its tectonics control in northeastern Brazil. J S Am Earth Sci 15:183–198CrossRefGoogle Scholar
  35. Morais Neto JM, Pessoa Neto OC, Lana CC, Zalan PV (2003) Bacias sedimentares Brasileiras: Bacia do Ceará. Phoenix, Aracaju, v 57, p 1–6Google Scholar
  36. Nemčok M, Henk A, Allen R, Sikora PJ, Stuart C (2013) Continental break-up along strike-slip fault zones; observations from the Equatorial Atlantic. Geol Soc Lond Spec Publ 369:537–556.  https://doi.org/10.1144/SP369.8 CrossRefGoogle Scholar
  37. Pletsch T, Erbacher J, Holbourn AEL, Kuhnt W, Moullade M, Oboh-Ikuenobede FE, Söding E, Wagner T (2001) Cretaceous separation of Africa and South America: the view from the West African margin (ODP Leg 159). J S Am Earth Sci 14:147–174.  https://doi.org/10.1016/S0895-9811(01)00020-7 CrossRefGoogle Scholar
  38. Sage F, Basile C, Mascle J, Pontoise B, Whitmarsh RB (2000) Crustal structure of the continent-ocean transition off the Côte d’Ivoire - Ghana transform margin: implications for thermal exchanges across the palaeotransform boundary. Geophys J Int 143:662–678CrossRefGoogle Scholar
  39. Szatmari P, Françolin JBL, Zanotto O, Wolff S (1987) Evolução tectônica da margem equatorial brasileira. Rev Bras Geosci 17:180–188Google Scholar
  40. Vågnes E (1997) Uplift at thermo-mechanically coupled ocean-continent transforms: modeled at the Senja Fracture Zone, southwestern Barents Sea. Geo-Mar Lett 17:100–109CrossRefGoogle Scholar
  41. Zalan PV (2012) Bacias Sedimentares da Margem Equatorial. In: Geologia do Brasil, Primeira e, Beca-BALL Edições Ltda., São Paulo, pp 497–502Google Scholar
  42. Zalan PV, Nelson EP, Warme JE, Davis TL (1985) The Piaui Basin: rifting and wrenching in an Equatorial Atlantic transform basin. Soc Econ Paleontol Mineral:177–192.  https://doi.org/10.2110/pec.85.37.0177

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Geodinâmica e GeofísicaUniversidade Federal do Rio Grande do NorteRio GrandeBrazil

Personalised recommendations