Geo-Marine Letters

, Volume 38, Issue 3, pp 195–209 | Cite as

Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

  • Kim W. Conway
  • J. Vaughn Barrie


Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.



Gwyn Lintern provided vital support as project leader, and at sea support by Greg Middleton and Peter Neelands is gratefully acknowledged. John Shaw provided insightful discussions. Thanks to Burg Fleming for a very helpful review that improved the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Agliardi F, Crosta GB, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1-2):83–102. CrossRefGoogle Scholar
  2. Ambrosi C, Crosta GB (2005) Large sackung along major tectonic features in the central Italian alps. Eng Geol 83:183–200CrossRefGoogle Scholar
  3. Bianchi Fasani G, Di Luzio E, Esposito C, Evans SG, Scarascia Mugnozza G (2014) Quaternary catastrophic rock avalanches in the central Apennines (Italy): relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology 211:22–42. CrossRefGoogle Scholar
  4. Blais-Stevens A, Claque JJ, Mathewes RW, Hebda RJ, Bornhold BD (2003) Record of large, late Pleistocene outburst floods preserved in Saanich inlet sediments, Vancouver Island, Canada. Quat Sci Rev 22(21-22):2327–2334. CrossRefGoogle Scholar
  5. Bornhold BD (1983) Sedimentation in Douglas Channel and Kitimat arm. Canadian Hydrography and Ocean Sciences Technical Reports 18:1–218Google Scholar
  6. Bornhold BD, Thomson RE (2012) Tsunami hazard assessment related to slope failures in coastal waters. In: Clague JJ, Stead D (eds) Landslides – types, mechanisms and modeling, Cambridge University press, Cambridge, chapter, vol 10, pp 108–120. CrossRefGoogle Scholar
  7. Bornhold BD, Harper JR, McLaren D, Thomson RE (2007) Destruction of the first nations village of Kwalate by a rock avalanche-generated tsunami. Atmosphere-Ocean 45(2):123–128. CrossRefGoogle Scholar
  8. Boyles JM, Scott AJ, Rine JM (1986) A logging form for graphic descriptions of core and outcrop. J Sediment Petrol 56(4):567–568. CrossRefGoogle Scholar
  9. Brückl EP (2001) Cause-effect models of large landslides. Nat Hazards 23(2/3):291–314. CrossRefGoogle Scholar
  10. Clague JJ (1984) Quaternary geology and geomorphology of the Smithers-terrace-Prince Rupert area, British Columbia. Geological survey of Canada Memoir 413, 82 ppGoogle Scholar
  11. Clague JJ (1985) Deglaciation of the Prince Rupert - Kitimat area, British Columbia. Can J Earth Sci 22(2):256–265. CrossRefGoogle Scholar
  12. Conway KW, Barrie JV (2015) Large submarine slope failures and associated Quaternary faults in Douglas Channel, British Columbia. Geological Survey of Canada, Current Research 2015-9, 12 pp. doi:
  13. Conway KW, Barrie JV, Hebda RJ (2001) Evidence for a late quaternary outburst flood event in the Georgia Basin, British Columbia. Geological Survey of Canada, Current Research 2001-A13, 6 ppGoogle Scholar
  14. Conway KW, Barrie JV, Thomson RE (2012) Submarine slope failures and tsunami hazard in coastal British Columbia: Douglas Channel and Kitimat Arm. Geological Survey of Canada, Current Research 2012-2010, 13 pp. doi:
  15. Conway KW, Kung RB, Barrie JV, Hill PR, Lintern DG (2013) A preliminary assessment of the occurrence of submarine slope failures in Coastal British Columbia by analysis of swath multibeam bathymetric data collected 2001b-2011. Geol Surv Canada, Open File 7348.
  16. Crosta C, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33. CrossRefGoogle Scholar
  17. Duffell S, Souther JG (1964) Geology of the terrace map area, British Columbia (103 1E). Geol Surv Canada Memoir 329, 117 ppGoogle Scholar
  18. Fairbanks RG, Mortlock RA, Chiu T, Cao L, Kaplan A, Guilderson TP, Fairbanks TW, Bloom AL (2005) Marine radiocarbon calibration curve spanning 0 to 50,000 years B.P. based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24(16-17):1781–1796. CrossRefGoogle Scholar
  19. Forcella F (1984) The Sackung between mount Padrio and mount Varadega, central alps, Italy: a remarkable example of slope gravitational tectonics. Méditerranée, Troisième série 51(1-2):81–92. CrossRefGoogle Scholar
  20. Gutiérrez F, Acosta E, Ríos S, Guerrero J, Lucha P (2005) Geomorphology and geochronology of sackung features (uphill-facing scarps) in the central Spanish Pyrenees. Geomorphology 69(1-4):298–314. CrossRefGoogle Scholar
  21. Helm A (1932) Bergsturz und Menschenleben. Fretz und Wassermuth, Zürich, Switzerland, 218 ppGoogle Scholar
  22. Hetherington R, Barrie JV, Reid RGB, MacLeod R, Smith DJ (2004) Paleogeography, glacially induced crustal displacement, and late quaternary coastlines on the continental shelf of British Columbia Canada. Quat Sci Rev 23(3-4):295–318. CrossRefGoogle Scholar
  23. Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87(1-2):1–38. CrossRefGoogle Scholar
  24. Hippolyte JC, Bourlès D, Léanni L, Braucher R, Chauvet F, Lebatard AE (2012) 10Be ages reveal >12 ka of gravitational movement in a major sackung of the Western Alps (France). Geomorphology 171-172:139–153. CrossRefGoogle Scholar
  25. Holland S (1976) Landforms of British Columbia – a physiographic outline. British Columbia Department of Mines and Petroleum Resources, Bulletin 48, 138 ppGoogle Scholar
  26. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Proc 5th Intl Symp landslides, Lausanne, Switzerland. Balkema, Rotterdam, pp 3–35Google Scholar
  27. Johannessen SJ, Wright CA, Spear DJ (2015) Seasonality and physical control of water properties and sinking and suspended particles in Douglas Channel, British Columbia. Canadian hydrography and ocean sciences, technical reports 308, 26 ppGoogle Scholar
  28. Li Z, Bruhn RL, Pavlis TL, Vorkink M, Zeng Z (2012) Origin of sackung uphill-facing scarps in the Saint Elias orogen, Alaska: LIDAR data visualization and stress modeling. GSA Bull 122(9-10):1585–1599. CrossRefGoogle Scholar
  29. Macdonald RW, Bornhold BD, Webster I (1983) The Kitimat fjord system: an introduction. Canadian Hydrography and Ocean Sciences, Technical Reports 18:2–13Google Scholar
  30. Mazzotti S, Hyndman RD, Flück P, Smith AJ, Schmidt M (2003) Distribution of the Pacific/North America motion in the Queen Charlotte Islands - S. Alaska plate boundary zone. Geophys Res Lett 30(14):1762. CrossRefGoogle Scholar
  31. Mazzotti S, Leonard LJ, Cassidy JF, Rogers GC, Halchuk S (2011) Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J Geophys Res 116(B12):B12310. CrossRefGoogle Scholar
  32. McCalpin JP, Hart EW (2002) Ridge top spreading features and relationship to earthquakes, San Gabriel Mountains, Southern California. Part B: Paleoseismic investigations of ridge-top depressions. U.S. Geological Survey, National Earthquake Hazards Reduction Program, Final Technical Report 99HQGR0042Google Scholar
  33. Mosher DM (2009) Submarine landslides and consequent tsunamis in Canada. Geosci Can 36(4):179–219Google Scholar
  34. Nelson JL, Diakow LJ, Mahoney JB, van Staal J, Pecha M, Angens JJ, Gehrels G, Lau T (2011) North coast project: tectonics and metallogeny of the Alexander terrane and cretaceous sinistral shearing of the western Coast Belt. BC Ministry of Energy and Mines, Geological Fieldwork Paper 2011.
  35. Pánek T, Mentlík P, Ditchburn B, Zondervan A, Norton K, Hradecký J (2015) Are sackungen diagnostic features of (de)glaciated mountains? Geomorphology 248:396–410. CrossRefGoogle Scholar
  36. Poisel R, Preh A (2004) Rock slope initial failure mechanisms and their mechanical models. Felsbau 22:40–45Google Scholar
  37. Poisel R, Preh A (2008) Landslide detachment mechanisms: an overview of their mechanical models. In: Ho K, Li V (eds) Proc 2007 Intl Forum Landslide Disaster Management, 10–12 December 2007, Hong Kong, pp 1043–1058Google Scholar
  38. Roddick JA (1970) Douglas Channel-Hecate Strait map area, British Columbia (103 H). Geological Survey of Canada, Paper 70-41, 56 ppGoogle Scholar
  39. Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW alps. Geomorphology 117(1-2):1–13. CrossRefGoogle Scholar
  40. Schwab JW, Kirk M (2002) Sackungen on a forested slope, Kitnayakwa River, Prince Rupert Forest region. British Columbia Forest Service, extension note #47Google Scholar
  41. Shaw J, Stacey CD, Wu Y, Lintern DG (2017) Anatomy of the Kitimat fiord system, British Columbia. Geomorphology 293:108–129. CrossRefGoogle Scholar
  42. Soldati M (2013) Deep-seated gravitational slope deformation. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 151–154. CrossRefGoogle Scholar
  43. St. Onge G, Mulder T, Piper DJW, Hillaire-Marcel M (2004) Earthquake and flood induced turbidites in the Saguenay Fjord (Quebec): a Holocene paleoseismicity record. Sci Rev 23(3-4):283–294. CrossRefGoogle Scholar
  44. Thompson SC, Clague JJ, Evans SG (1997) Holocene activity of the Mt. Currie scarp, Coast Mountains, British Columbia, and implications for its origin. Eng Geosci III(3):329–348. CrossRefGoogle Scholar
  45. Thomson RE, Fine I, Krassovski M, Cherniawsky J, Conway KW, Wills P (2012) Numerical simulation of tsunamis generated by submarine slope failures in Douglas Channel, British Columbia. Department of Fisheries and Oceans, Canadian science advisory research document 2012/115, 38 ppGoogle Scholar
  46. Weiss R, Fritz JM, Wünnemann K (2009) Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophys Res Lett 36(9):L09602. CrossRefGoogle Scholar
  47. Wentworth CK (1923) A scale of grade and class terms for clastic sediments. J Geol 30:377–392CrossRefGoogle Scholar
  48. Wheeler JO, Brookfield AJ, Gabrielse H, Monger JWH, Woodsworth GJ (1991) Terrane map of the Canadian Cordillera. Geological Survey of Canada, Map 1713A, scale 1:2 000 000Google Scholar
  49. Zischinsky U (1966) On the deformation of high slopes. In: ISRM Proc 1st Conf International Society for Rock Mechanics, 25 Sept.–1 Oct. 1966, Lisbon, Section 2, pp 179–185Google Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Geological Survey of CanadaNatural Resources CanadaSidneyCanada

Personalised recommendations