Advertisement

Geo-Marine Letters

, Volume 38, Issue 3, pp 227–240 | Cite as

The Seno Otway pockmark field and its relationship to thermogenic gas occurrence at the western margin of the Magallanes Basin (Chile)

  • R. KilianEmail author
  • S. Breuer
  • J. H. Behrmann
  • O. Baeza
  • M. Diaz-Michelena
  • E. Mutschke
  • H. Arz
  • F. Lamy
Original
  • 269 Downloads

Abstract

Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since ~15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.

Notes

Acknowledgements

This study was funded by Grant Ki-456/11 of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). We thank Willi Weinrebe (Geomar, Kiel) for his assistance in setting up the portable multi beam equipment, and Marcelo Arevalo for his encouragement during various cruises aboard the RV Gran Campo II since 2002, Dr. Carlos Ríos from the University of Magallanes for a multiple logistic support, and Francisco Ríos for assessing a preliminary version of the manuscript. Also acknowledged are very constructive suggestions from the journal editors and an anonymous reviewer.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

References

  1. Acosta J, Muñoz A, Herranz P, Palomo C, Ballesteros M, Vaquero M, Uchupi E (2001) Pockmarks in the Ibiza Channel and western end of the Balearic promontory (western Mediterranean) revealed by multibeam mapping. Geo-Mar Lett 21:123–130CrossRefGoogle Scholar
  2. Andrews BD, Brothers LL, Barnhard WA (2010) Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA. Geomorphology 124(1-2):55–64.  https://doi.org/10.1016/j.geomorph.2010.08.009 CrossRefGoogle Scholar
  3. Anka Z, Loegering MJ, di Primio R, Marchal D, Rodríguez JF, Vallejo E (2014) Distribution and origin of natural gas leakage in the Colorado Basin, offshore Argentina margin, South America: seismic interpretation and 3D basin modelling. Geol Acta 12(4):269–285Google Scholar
  4. Aracena C, Kilian R, Lange CB, Bertrand S, Lamy F, Arz H, DePol-Holz R, Pontoja S, Kissel S (2015) Holocene variations in productivity associated with changes in glacier activity and freshwater flux in the central basin of the strait of Magellan. Palaeogeogr Palaeoclimatol Palaeoecol 436:112–122.  https://doi.org/10.1016/j.palaeo.2015.06.023 CrossRefGoogle Scholar
  5. Bælum K, Braathen A (2012) Along-strike changes in fault array and rift basin geometry of the carboniferous Billefjorden trough, Svalbard, Norway. Tectonophysics 546-547:38–55.  https://doi.org/10.1016/j.tecto.2012.04.009 CrossRefGoogle Scholar
  6. Baraza J, Ercilla G (1996) Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain). Mar Pet Geol 13(2):253–261.  https://doi.org/10.1016/0264-8172(95)00058-5 CrossRefGoogle Scholar
  7. Betka P, Klepeis K, Mosher S (2016) Fault kinematics of the Magallanes-Fagnano fault system, southern Chile; an example of diffuse strain and sinistral transtension along a continental transform margin. J Struct Geol 85:130–153.  https://doi.org/10.1016/j.jsg.2016.02.001 CrossRefGoogle Scholar
  8. Biddle KT, Uliana MA, Mitchum M Jr, Fitzgerald MG, Wright RC (1986) The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. In: Allen PA, Homewood P (eds) Foreland basins. Int Assoc Sedimentol Spec Publ 8:41–61.  https://doi.org/10.1002/9781444303810.ch2
  9. Breitsprecher K, Thorkelson DJ (2009) Neogene kinematic history of Nazca–Antarctic–phoenix slab windows beneath Patagonia and the Antarctic peninsula. Tectonophysics 464(1-4):10–20.  https://doi.org/10.1016/j.tecto.2008.02.013 CrossRefGoogle Scholar
  10. Breuer S, Kilian R, Weinrebe W, Schörner D, Behrmann J (2013) Glacial and tectonic control on fjord morphology and sediment deposition in the Magellan region (53°S). Mar Geol 346:31–46.  https://doi.org/10.1016/j.margeo.2013.07.015 CrossRefGoogle Scholar
  11. Bustos B, Folchi M, Fragkou M (2016) Coal mining on pastureland in Southern Chile; challenging recognition and participation as guarantees for environmental justice. Geoforum 84:292–304CrossRefGoogle Scholar
  12. Calderón M, Prades CF, Hervé F, Avendaño V, Fanning CM, Massonne H-J, Theye T, Simonetti A (2013) Petrological vestiges of late Jurassic-early cretaceous transition from rift to back-arc basin in southernmost Chile: new age and geochemical data from the Capitán Aracena, Carlos III and Tortuga Ophiolitic complexes. Geochem J 47:201–217CrossRefGoogle Scholar
  13. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114Google Scholar
  14. Cifçi G, Dondurur D, Ergün M (2003) Deep and shallow structures of large pockmarks in the Turkish shelf, eastern Black Sea. Geo-Mar Lett 23(3-4):311–322.  https://doi.org/10.1007/s00367-003-0138-x CrossRefGoogle Scholar
  15. Diaz-Michelena M, Kilian R (2015) Magnetic signatures of the orogenic crust of the Patagonian Andes with implication for planetary exploration. Phys Earth Planet Inter 248:35–54.  https://doi.org/10.1016/j.pepi.2015.08.005 CrossRefGoogle Scholar
  16. Diraison M, Cobbold PR, Gapais D, Rossello EA (1996) Tertiary kinematics of the southern Andes and the development of the Magallan Foreland Basin (Patagonia). Third ISAG, St. Malo, p 347–350Google Scholar
  17. Dowdeswell JA, Vásquez M (2013) Submarine landforms in the fjords of southern Chile: implications for glacimarine processes and sedimentation in a mild glacier-influenced environment. Quat Sci Rev 64:1–19.  https://doi.org/10.1016/j.quascirev.2012.12.003 CrossRefGoogle Scholar
  18. Dowdeswell JA, Dowdeswell EK, Rodrigo C (2016) Pockmarks in the fjords of Chilean Patagonia. Geol Soc Lond Mem 46(1):109–110.  https://doi.org/10.1144/M46.159 CrossRefGoogle Scholar
  19. Duarte H, Pinheiro LM, Teixeira FC, Monteiro JH (2007) High-resolution seismic imaging of gas accumulations and seepage in the sediments of the Ría de Aveiro barrier lagoon (Portugal). Geo-Mar Lett 27(2-4):115–126.  https://doi.org/10.1007/s00367-007-0069-z CrossRefGoogle Scholar
  20. Fader GBJ (1991) Gas-related sedimentary features from the eastern Canadian continental shelf. Cont Shelf Res 11(8-10):1123–1153.  https://doi.org/10.1016/0278-4343(91)90094-M CrossRefGoogle Scholar
  21. Fernández R, Gulick S, Rodrigo C, Domack E, Leventer A (2017) Seismic stratigraphy and glacial cycles in the inland passages of the Magallanes region of Chile, southernmost South America. Mar Geol 386:19–31.  https://doi.org/10.1016/j.margeo.2017.02.006 CrossRefGoogle Scholar
  22. Geopark (2010) Geopark - Operations - Otway Block. http://www.geo-park.com/homepage.htm, 11.10.2010
  23. Glasser NF, Ghiglione MC (2009) Structural tectonic and glaciological controls on the evolution of fjord landscapes. Geomorphology 105(3-4):291–302.  https://doi.org/10.1016/j.geomorph.2008.10.007 CrossRefGoogle Scholar
  24. Harrington PK (1985) Formation of pockmarks by pore-water escape. Geo-Mar Lett 5(3):193–197.  https://doi.org/10.1007/BF02281638 CrossRefGoogle Scholar
  25. Heggland R (1998) Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Mar Pet Geol 15(1):1–9.  https://doi.org/10.1016/S0264-8172(97)00060-3 CrossRefGoogle Scholar
  26. Hervé F, Pankhurst RJ, Fanning CM, Calderón M, Yaxley GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97(3-4):373–394.  https://doi.org/10.1016/j.lithos.2007.01.007 CrossRefGoogle Scholar
  27. Hidalgo E, Helle S, Alfaro G, Kelm U (2002) Geology and characterisation of the Pecket coal deposit, Magellan region, Chile. Int J Coal Geol 48(3-4):233–243.  https://doi.org/10.1016/S0166-5162(01)00058-1 CrossRefGoogle Scholar
  28. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmermann SHR (2013) SHCAL13 southern hemispheric calibration, 0-50,000 years cal BP. Radiocarbon 55(4):1889–1903.  https://doi.org/10.2458/azu_js_rc.55.16783 CrossRefGoogle Scholar
  29. Hovland M, Talbot MR, Qvale H, Olaussen S, Aasberg L (1987) Methane-related carbonate cements in pockmarks of the North Sea. J Sediment Petrol 57(5):881–892Google Scholar
  30. Hovland M, Gardner JV, Judd A (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2(2):127–136.  https://doi.org/10.1046/j.1468-8123.2002.00028.x CrossRefGoogle Scholar
  31. Judd A, Hovland M (2007) Seabed fluid flow - the impact on geology, biology and the marine environment. Cambridge University Press, New York.  https://doi.org/10.1017/CBO9780511535918 CrossRefGoogle Scholar
  32. Kennett J, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change - the clathrate gun hypothesis. American Geophysical Union, Washington, D.C.  https://doi.org/10.1029/054SP CrossRefGoogle Scholar
  33. Kilian R, Lamy F (2012) A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49-52°S). Quat Sci Rev 53:1–23.  https://doi.org/10.1016/j.quascirev.2012.07.017 CrossRefGoogle Scholar
  34. Kilian R, Hohner M, Biester H, Wallrabe-Adams HJ, Stern CR (2003) Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53-55°S). Rev Geol Chile 30(2):47–64Google Scholar
  35. Kilian R, Schneider C, Koch J, Fesq-Martin M, Biester H, Casassa G, Arévalo M, Wendt G, Baeza O, Behrmann J (2007a) Palaeoecological constraints on late glacial and Holocene ice retreat in the southern Andes (53°S). Glob Planet Chang 59(1-4):49–66.  https://doi.org/10.1016/j.gloplacha.2006.11.034 CrossRefGoogle Scholar
  36. Kilian R, Baeza O, Steinke T, Arévalo M, Rios C, Schneider C (2007b) Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magallanes fjord system of Chile (53°S). Quat Int 161(1):90–107.  https://doi.org/10.1016/j.quaint.2006.10.043 CrossRefGoogle Scholar
  37. Kilian R, Baeza O, Breuer S, Ríos F, Arz H, Lamy L, Wirtz J, Baque D, Korf P, Kremer K, Ríos C, Mutschke E, Simon M, De Pol-Holz R, Arevalo M, Wörner G, Schneider C, Casassa G (2013) Late glacial and Holocene paleogeographical and paleoecological evolution of the Seno Skyring and Otway fjord systems in the Magellanes Region. An Inst Patagonia (Chile) 41(2):7–21Google Scholar
  38. King LH, MacLean B (1970) Pockmarks on the Scotian shelf. Geol Soc Am Bull 81(10):3141–3148.  https://doi.org/10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2 CrossRefGoogle Scholar
  39. Kjeldsen KK, Weinrebe RW, Bendtsen J, Bjørk AA, Kjær KH (2017) Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland. Earth Syst Sci Data 9(2):589–600.  https://doi.org/10.5194/essd-9-589-2017 CrossRefGoogle Scholar
  40. Krämer K, Holler P, Herbst G, Bratek A, Ahmerkamp S, Neumann A, Bartholomä A, van Beusekom JEE, Holtappels M, Winter C (2017) Abrupt emergence of a large pockmark field in the German Bight, south-eastern North Sea. Sci Rep 7(1):5150.  https://doi.org/10.1038/s41598-017-05536-1 CrossRefGoogle Scholar
  41. Lamy F, Kilian R, Arz HW, Francois J-P, Kaiser J, Prange M, Steinke T (2010) Holocene changes in the position and intensity of the southern westerly wind belt. Nat Geosci 3(10):695–699.  https://doi.org/10.1038/ngeo959 CrossRefGoogle Scholar
  42. Maia AR, Cartwright J, Andersen E (2016) Shallow plumbing systems inferred from spatial analysis of pockmark arrays. Mar Pet Geol 77:865–881.  https://doi.org/10.1016/j.marpetgeo.2016.07.029 CrossRefGoogle Scholar
  43. Malkowski MA, Sharman GR, Graham SA, Fildani A (2015) Characterisation and diachronous initiation of coarse clastic deposition in the Magallanes–Austral foreland basin, Patagonian Andes. Basin Res 2015:1–29.  https://doi.org/10.1111/bre.12150 Google Scholar
  44. Marcon Y, Ondréas H, Sahling H, Bohrmann G, Olu K (2013) Fluid flow regimes and growth of a giant pockmark. Geology 42:63–66CrossRefGoogle Scholar
  45. Mazzini A, Svensen HH, Planke S, Forsberg CF, Tjelta TI (2016) Pockmarks and methanogenic carbonates above the giant troll gas field in the Norwegian North Sea. Mar Geol 373:26–38.  https://doi.org/10.1016/j.margeo.2015.12.012 CrossRefGoogle Scholar
  46. McAtamney J, Klepeis K, Mehrtens C, Thomson S, Betka P, Rojas L, Snyder S (2011) Along-strike variability of back-arc basin collapse and the initiation of sedimentation in the Magallanes foreland basin, southernmost Andes (53–54.5°S). Tectonics 30(5):TC5001.  https://doi.org/10.1029/2010TC002826 CrossRefGoogle Scholar
  47. Mella P (2001) Control Tectónico en la Evolución de la Cuenca de Antepaís de Magallanes, XII Región, Chile. Memoria para optar al título de Geólogo, Facultad de Ciencias Químicas, Departamento Ciencias de la Tierra, Universidad de Concepción, 149 ppGoogle Scholar
  48. Mercer JH (1982) Holocene glacial variations in southern South America. Striae 18:35–40Google Scholar
  49. Michelsen JK, Khorasani GK (1991) A regional study on coals from Svalbard: organic facies, maturity and thermal history. Bull Soc Géol France 162(2):385–397Google Scholar
  50. Moernaut J, Wiemer G, Reusch A, Stark N, De Batist M, Urrutia R, Ladrón de Guevara B, Kopf A, Strasser M (2017) The influence of overpressure and focused fluid flow on subaquatic slope stability in a formerly glaciated basin: Lake Villarrica (South-Central Chile). Mar Geol 383:35–54.  https://doi.org/10.1016/j.margeo.2016.11.012 CrossRefGoogle Scholar
  51. Naudts L, Greinert J, Artemov Y, Beaubien SE, Borowski C, De Batist M (2008) Anomalous sea-floor backscatter patterns in methane venting areas, Dnepr paleo-delta, NW Black Sea. Mar Geol 251(3-4):253–267.  https://doi.org/10.1016/j.margeo.2008.03.002 CrossRefGoogle Scholar
  52. Ondréas H, Olu K, Fouquet Y, Charlou JL, Gay A, Dennielou B, Donval JP, Fifis A, Nadalig T, Cochonat P, Cauquil E, Bourillet JF, Le Moigne M, Sibuet M (2005) ROV study of a giant pockmark on the Gabon continental margin. Geo-Mar Lett 25(5):281–292.  https://doi.org/10.1007/s00367-005-0213-6 CrossRefGoogle Scholar
  53. Paull CK, Ussler W III, Holbrook WS, Hill TM, Keaten R, Mienert J, Haflidason H, Johnson JE, Winters WJ, Lorenson TD (2008) Origin of pockmarks and chimney structures on the flanks of Storegga slide, offshore Norway. Geo-Mar Lett 28(1):43–51.  https://doi.org/10.1007/s00367-007-0088-9 CrossRefGoogle Scholar
  54. Perdue EM, Koprivnjak J-F (2007) Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuar Coast Shelf Sci 73(1-2):65–72.  https://doi.org/10.1016/j.ecss.2006.12.021 CrossRefGoogle Scholar
  55. Pickrill RA (1993) Shallow seismic stratigraphy and pockmarks of a hydrothermally influenced lake, lake Rotoiti, New Zealand. Sedimentology 40(5):813–828.  https://doi.org/10.1111/j.1365-3091.1993.tb01363.x CrossRefGoogle Scholar
  56. Poblete FA (2015) Formación del Oroclino Patagónico y evolución paleogeog ráfica del sistema Patagonia-Península Antártica. Doctoral Thesis at the University of Chile, Santiago, 299 p. http://repositorio.uchile.cl/handle/2250/136319
  57. Portnov A, Vadakkepuliyambatta S, Mienert J, Hubbard A (2016) Ice-sheet-driven methane storage and release in the Arctic. Nat Commun 7:10314.  https://doi.org/10.1038/ncomms10314 CrossRefGoogle Scholar
  58. Ramos VA (1989) Andean foothills structures in the northern Magallanes Basin, Argentina. Am Assoc Petr Geol 73(7):887–903Google Scholar
  59. Riboulot V, Cattaneo A, Sultan N, Garziglia S, Kera S, Imbert P, Voisset M (2013) Sea level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deep water Nigeria. Earth Planet Sci Lett 375:78–91.  https://doi.org/10.1016/j.epsl.2013.05.013 CrossRefGoogle Scholar
  60. Ríos F, Kilian R, Mutschke E (2016) Chlorophyll-a thin layers in the Magellan fjord system: the role of the water column stratification. Cont Shelf Res 124:1–12.  https://doi.org/10.1016/j.csr.2016.04.011 CrossRefGoogle Scholar
  61. Rise L, Bellec VK, Chand S, Bøe R (2015) Pockmarks in the southwestern Barents Sea and Finnmark fjords. Nor J Geol 94:263–282Google Scholar
  62. Rothwell RG, Rack FR (2006) New techniques in sediment core analysis. Geol Soc Lond Spec Publ 267(1):1–29.  https://doi.org/10.1144/GSL.SP.2006.267.01.01 CrossRefGoogle Scholar
  63. Roy S, Hovland M, Noormets R, Olaussen S (2015) Seepage in Isfjorden and its tributary fjords, West Spitsbergen. Mar Geol 363:146–159.  https://doi.org/10.1016/j.margeo.2015.02.003 CrossRefGoogle Scholar
  64. Schwartz TM, Graham SA (2015) Stratigraphic architecture of a tide-influenced shelf-edge delta, upper cretaceous Dorotea formation, Magallanes-Austral Basin, Patagonia. Sedimentology 62(4):1039–1077.  https://doi.org/10.1111/sed.12176 CrossRefGoogle Scholar
  65. Scott AR (2002) Hydrogeological features affecting gas content distribution in coal beds. Int J Coal Geol 50(1-4):363–387.  https://doi.org/10.1016/S0166-5162(02)00135-0 CrossRefGoogle Scholar
  66. Sernageomin (2003) Mapa geologico de Chile version digital, escala 1:1.000.000. Publicación Geológica Digital nr 4, CD-ROM, version 1.0, Santiago de ChileGoogle Scholar
  67. Stern CR (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70(4):435–454.  https://doi.org/10.1007/s00445-007-0148-z CrossRefGoogle Scholar
  68. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123(3):263–281.  https://doi.org/10.1007/s004100050155 CrossRefGoogle Scholar
  69. Urien CM, Zambrano JJ, Yrigoyen MR (1995) Petroleum basins of southern South America: an overview. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum basins of South America, vol 62. AAPG, Memoir, Tulsa, pp 63–78Google Scholar
  70. Webb K, Barnes D, Gray JS (2009) Benthic ecology of pockmarks in the inner Oslofjord, Norway. Mar Ecol Prog Ser 387:15–25.  https://doi.org/10.3354/meps08079 CrossRefGoogle Scholar
  71. Winsborrow M, Andreassen K, Hubbard A, Plaza-Faverola A, Gudlaugsson E, Patton H (2016) Regulation of ice stream flow through subglacial formation of gas hydrates. Nat Geosci 9(5):370–375.  https://doi.org/10.1038/ngeo2696 CrossRefGoogle Scholar
  72. Wölfl A-C, Wittenberg N, Feldens P, Hass HC, Betzler C, Kuhn G (2016) Submarine landforms related to glacier retreat in a shallow Antarctic fjord. Antarct Sci 28(6):475–486.  https://doi.org/10.1017/S0954102016000262 CrossRefGoogle Scholar
  73. Wunderlich J, Müller S (2003) High-resolution sub-bottom profiling using parametric acoustics. Int Ocean Syst 7(4):6–11Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Geology DepartmentUniversity of TrierTrierGermany
  2. 2.University of MagallanesPunta ArenasChile
  3. 3.Bundesanstalt für Geowissenschaften und RohstoffkundeHannoverGermany
  4. 4.Helmholtz-Zentrum für OzeanforschungKielGermany
  5. 5.Payloads and Space Sciences DepartmentINTAMadridSpain
  6. 6.Institute for Baltic ResearchWarnemündeGermany
  7. 7.Alfred Wegener InstituteBremerhavenGermany

Personalised recommendations