Geo-Marine Letters

, Volume 38, Issue 1, pp 63–81 | Cite as

A non-deltaic clinoform wedge fed by multiple sources off São Sebastião Island, southeastern Brazilian Shelf

  • Ivo Vieira
  • Francisco José Lobo
  • Isabel Montoya-Montes
  • Eduardo Siegle
  • Jorge Luiz Passos
  • Michel Michaelovitch De Mahiques


São Sebastião Island (SSI) marks the latitudinal boundary between two sedimentological and geochemical provinces in the São Paulo Bight, an arc-shaped sector of the southeastern Brazilian Shelf. The island is separated from the continent by the narrow, deep São Sebastião Channel (SSC). A relatively thick sediment wedge—the São Sebastião Wedge (SSW)—has been formed offshore SSI. This study explores the possible genetic and evolutionary mechanisms of the wedge, bearing in mind that clinoform wedges can form at considerable distances from major fluvial sources. For that, a marine geological database has been interpreted comprising high-resolution seismic data, a surficial sediment map and several sediment cores, from which radiocarbon dates were obtained and sedimentation rates deduced. A wave model was also applied to obtain the dominant wave directions. The SSW is a wedge-shaped deposit, and its internal structure presents three seismic units. The two lowest are wedge shaped and arranged in a backstepping pattern. The most recent unit is mostly aggradational and can be divided into three seismic subunits. Sedimentological data show that at least the most recent unit is composed of a mixture of sands and silts. Modeled wave conditions indicate a major influence from southerly waves that are able to remobilize shelf sediments and to create a bypass sediment zone until the foreset of the deposit is reached at the water depths where the SSW is found. Taken together, these data suggest that the SSW formed through contributions from different sediment sources, and should be regarded as an intermediate case of a non-deltaic clinoform wedge. Sand transport in the area involves wind-driven currents passing through the SSC and sediment remobilization by energetic southerly waves. Fine-grained sediment is derived mostly from the joint contributions of many minor catchments located north of the island, and this sediment is later transported southwestward by the prevailing surface currents. The morphological obstacle presented by the island leads to current veering and subsequent sediment deposition. The internal architecture of the wedge indicates that its deposition was probably initiated during the last part of the postglacial transgression, but its present-day morphology is mostly a product of episodic highstand sedimentation that began under conditions of gently falling sea levels during the last 5 ka, after the Holocene glacio-eustatic maximum.



This is a contribution to projects 2014/08295-2 and 2015/06884-3, both funded by the “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)”, and to project 459623/2014-1 funded by the Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq). The authors acknowledge the University of São Paulo for providing the seismic and sediment core data via the NAP-GEOSEDEX Program, and thank the crew and researchers who participated in the RV Alpha Delphini and Alpha Crucis cruises. M.M. de Mahiques acknowledges CNPq (grant 303132/2014-0) and FAPESP (grant 2010/06147-5). F.J. Lobo acknowledges the Brazilian program “Ciência sem Fronteiras” funded by the CNPq, enabling him to conduct several research stages as “Pesquisador Visitante Especial” at the Instituto Oceanográfico, Universidade de São Paulo, under project number 401041/2014-0. M.M. de Mahiques and E. Siegle are CNPq research fellows. The authors acknowledge IHS Markit for providing the software Kingdom, under the Educational Grant Program. The authors also would like to acknowledge the contribution provided by the reviewers R. Quartau and D. Casalbore, which led to an improved version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Agência Nacional de Águas – Brazil (2017)
  2. Alcántara-Carrió J, Sasaki DK, de Mahiques MM, Taborda R, Souza LAP (2017) Sedimentary constraints on the development of a narrow deep strait (São Sebastião Channel, SE Brazil). Geo-Marine Letters. doi: 10.1007/s00367-017-0495-5
  3. Almeida FFM (1976) The system of continental rifts bordering the Santos Basin, Brazil. Anais Academia Brasileira Ciências 48:15–26Google Scholar
  4. Angulo R, Lessa G, Souza M (2006) A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486–506. doi: 10.1016/j.quascirev.2005.03.008 CrossRefGoogle Scholar
  5. Belo WC, Dias GTM, Dias MS (2002) O fundo marinho da baía da Ilha Grande, RJ: O relevo submarino e a sedimentação no canal central. Revista Brasileira Geofisica 20:5–15. doi: 10.1590/S0102-261X2002000100001
  6. Campos RM, Camargo R, Harari J (2010) Caracterização de eventos extremos do nível do mar em Santos e sua correspondência com as reanálises do modelo do NCEP no sudoeste do Atlântico sul. Revista BrasileiraMeteorologia 25:175–184. doi: 10.1590/S0102-77862010000200003
  7. Casalbore D, Falese F, Martorelli E, Romagnoli C, Chiocci FL (2017) Submarine depositional terraces in the Tyrrhenian Sea as a proxy for paleo-sea level reconstruction: problems and perspective. Quat Int 439:169–180. doi: 10.1016/j.quaint.2016.02.027
  8. Castro Filho BM, Miranda LB, Myiao SY (1987) Condições hidrográficas na plataforma continental ao largo de Ubatuba: variações sazonais e em média escala. Boletim do Instituto Oceanográfico 35:135–151. doi: 10.1590/S1679-87591987000200004 CrossRefGoogle Scholar
  9. Cattaneo A, Correggiari A, Langone L, Trincardi F (2003) The late-Holocene Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations. Marine Geology 193:61–91. doi: 10.1016/s0025-3227(02)00614-x CrossRefGoogle Scholar
  10. Cerda C, Castro BM (2014) Hydrographic climatology of South Brazil Bight shelf waters between Sao Sebastiao (24°S) and Cabo Sao Tome (22°S). Continental Shelf Research 89:5–14. doi: 10.1016/j.csr.2013.11.003 CrossRefGoogle Scholar
  11. Chiocci FL, Orlando L (1996) Lowstand terraces on Tyrrhenian Sea steep continental slopes. Marine Geology 134:127–143. doi: 10.1016/0025-3227(96)00023-0 CrossRefGoogle Scholar
  12. Comitê de Bacias Hidrográficas do Litoral Norte (2014) Disponibilidade hídrica das Bacias Hidrográficas do Litoral Norte. Ubatuba SP.
  13. Conti LA (2009) Evidências da evolução dos sistemas de paleodrenagens na plataforma continental da região de São Sebastião (litoral norte do Estado de São Paulo). Revista Brasileira Geomorfologia 10:45–55. doi: 10.20502/rbg.v10i2.130
  14. Conti LA, Furtado VV (2006) Geomorfologia da plataforma continental do estado de São Paulo. Revista Brasileira de Geociencias 36:305–312Google Scholar
  15. Conti LA, Furtado VV (2009) Topographic registers of paleo-valleys on the southeastern Brazilian continental shelf. Braz J Oceanogr 57:113–121. doi: 10.1590/S1679-87592009000200004
  16. Corrêa ICS (1996) Les variations du niveau de la mer durant les derniers 17.500 ans BP: l’exemple de la plate-forme continentale du Rio Grande do Sul-Brésil. Marine Geology 130:163–178. doi: 10.1016/0025-3227(95)00126-3 CrossRefGoogle Scholar
  17. de Mahiques MM, Mishima Y, Rodrigues M (1999) Characteristics of the sedimentary organic matter on the inner and middle continental shelf between Guanabara Bay and São Francisco do Sul, southeastern Brazilian margin. Continental Shelf Research 19:775–798. doi: 10.1016/s0278-4343(98)00105-8 CrossRefGoogle Scholar
  18. de Mahiques MM, Tessler MG, Maria Ciotti A, da Silveira ICA, e sousa SHDM, Figueira RCL, Tassinari CCG, Furtado VV, Passos RF (2004) Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. Continental Shelf Research 24:1685–1697. doi: 10.1016/j.csr.2004.05.013 CrossRefGoogle Scholar
  19. de Mahiques MM, Tassinari CCG, Marcolini S, Violante RA, Figueira RCL, da Silveira ICA, Burone L, de Mello e Sousa SH (2008) Nd and Pb isotope signatures on the Southeastern South American upper margin: implications for sediment transport and source rocks. Marine Geology 250:51–63. doi: 10.1016/j.margeo.2007.11.007 CrossRefGoogle Scholar
  20. de Mahiques MM, Coaracy Wainer IK, Burone L, Nagai R, de Mello e Sousa SH, Lopes Figueira RC, Almeida da Silveira IC, Bícego MC, Vicente Alves DP, Hammer Ø (2009) A high-resolution Holocene record on the Southern Brazilian shelf: paleoenvironmental implications. Quaternary International 206:52–61. doi: 10.1016/j.quaint.2008.09.010 CrossRefGoogle Scholar
  21. de Mahiques M, Tessler MG, Antonio F, Toledo DL, Burone L, Cesar R, Figueira L (2010) The southern Brazilian shelf: general characteristics, Quaternary evolution and sediment distribution. Braz J Oceanogr 58:25–34. doi: 10.1590/S1679-87592010000600004
  22. de Mahiques MM, Sousa SHM, Burone L, Nagai RH, Silveira RCL, Soutelino RG, Ponsoni L, Klein DA (2011) Radiocarbon geochronology of the sediments of the São Paulo Bight (southern Brazilian upper margin). Anais da Academia Brasileira de Ciências 83:817–834. doi: 10.1590/S0001-37652011005000028 CrossRefGoogle Scholar
  23. de Mahiques MM, Hanebuth TJJ, Martins CC, Montoya-Montes I, Alcántara-Carrió J, Figueira RCL, Bícego MC (2016) Mud depocentres on the continental shelf: a neglected sink for anthropogenic contaminants from the coastal zone. Environment and Earth Science:75. doi: 10.1007/s12665-015-4782-z
  24. Deng B, Wu H, Yang S, Zhang J (2017) Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River Estuary. Estuarine, Coastal and Shelf Science 190:1–10. doi: 10.1016/j.ecss.2017.03.015 CrossRefGoogle Scholar
  25. Ercilla G, Estrada F, Casas D, Durán R, Nuez M, Alonso B, Ml F (2009) The El Masnou infralittoral sedimentary environment (Barcelona province, NW Mediterranean Sea): morphology and Holocene seismic stratigraphy. Scientia Marina 74:179–196. doi: 10.3989/scimar.2010.74n1179 CrossRefGoogle Scholar
  26. Fernández-Salas LM, Dabrio CJ, Goy JL, Díaz del Río V, Zazo C, Lobo FJ, Sanz JL, Lario J (2009) Land–sea correlation between Late Holocene coastal and infralittoral deposits in the SE Iberian Peninsula (Western Mediterranean). Geomorphology 104:4–11. doi: 10.1016/j.geomorph.2008.05.013 CrossRefGoogle Scholar
  27. Field ME, Roy PS (1984) Offshore transport and sand-body formation: evidence from a steep, high-energy shoreface, Southeastern Australia. J Sediment Res 54:1292–1302. doi: 10.1306/212F85C1-2B24-11D7-8648000102C1865D
  28. Figueiredo AG, Tessler MG (2004) Topografia e composição do substrato marinho da região sudeste-sul do Brasil. Instituto Oceanográfico, USP, São PauloGoogle Scholar
  29. Gao S, Collins MB (2014) Holocene sedimentary systems on continental shelves. Marine Geology 352:268–294. doi: 10.1016/j.margeo.2014.03.021 CrossRefGoogle Scholar
  30. Gao S, Liu Y, Yang Y, Liu PJ, Zhang Y, Wang YP (2015) Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf. Journal of Asian Earth Sciences 114:562–573. doi: 10.1016/j.jseaes.2015.07.024 CrossRefGoogle Scholar
  31. Hanebuth TJJ, Lantzsch H, Nizou J (2015) Mud depocenters on continental shelves—appearance, initiation times, and growth dynamics. Geo-Marine Letters 35:487–503. doi: 10.1007/s00367-015-0422-6 CrossRefGoogle Scholar
  32. Hernández-Molina FJ, Fernández-Salas LM, Lobo F, Somoza L, Díaz-del-Río V, Alveirinho Dias JM (2000) The infralittoral prograding wedge: a new large-scale progradational sedimentary body in shallow marine environments. Geo-Marine Letters 20:109–117. doi: 10.1007/s003670000040 CrossRefGoogle Scholar
  33. Holthuijsen LH, Booij N, Ris RC (1993) A spectral wave model for the coastal zone. In: Proc 2nd Int Symp Ocean Wave Measurement and Analysis, New, Orleans, Louisiana, pp 630–641Google Scholar
  34. Kjerfve B, Rivbeiro CHA, Dias GTM, Filippo AM, Quaresma VS (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental Shelf Research 17:1609–1643. doi: 10.1016/S0278-4343(97)00028-9
  35. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences 111:15296–15303. doi: 10.1073/pnas.1411762111 CrossRefGoogle Scholar
  36. Lantzsch H, Hanebuth TJJ, Chiessi CM, Schwenk T, Violante RA (2014) The high-supply, current-dominated continental margin of southeastern South America during the late quaternary. Quaternary Research 81:339–354. doi: 10.1016/j.yqres.2014.01.003 CrossRefGoogle Scholar
  37. Lee G-S, Yoo DG, Bae SH, Min G-H, Kim S-P, Choi H (2015) Seismic stratigraphy of the Heuksan mud belt in the southeastern Yellow Sea, Korea. Geo-Marine Letters 35:433–446. doi: 10.1007/s00367-015-0420-8 CrossRefGoogle Scholar
  38. Lentz SJ, Largier J (2006) The influence of wind forcing on the Chesapeake Bay buoyant coastal current. Journal of Physical Oceanography 36:1305–1316. doi: 10.1175/JPO2909.1 CrossRefGoogle Scholar
  39. Liu JP, Li AC, Xu KH, Velozzi DM, Yang ZS, Milliman JD, DeMaster DJ (2006) Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research 26:2141–2156. doi: 10.1016/j.csr.2006.07.013 CrossRefGoogle Scholar
  40. Liu J, Saito Y, Wang H, Yang Z, Nakashima R (2007a) Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology 236:165–187. doi: 10.1016/j.margeo.2006.10.031 CrossRefGoogle Scholar
  41. Liu JP, Xu KH, Li AC, Milliman JD, Velozzi DM, Xiao SB, Yang ZS (2007b) Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 85:208–224. doi: 10.1016/j.geomorph.2006.03.023 CrossRefGoogle Scholar
  42. Liu JP, Xue Z, Ross K, Wang HJ, Yang ZS, Li AC, Gao S (2009) Fate of sediments delivered to the sea by Asian large rivers: long-distance transport and formation of remote alongshore clinothems. In: The Sedimentary Record. SEPM, pp 4–9Google Scholar
  43. Lobo FJ, Fernández-Salas LM, Hernández-Molina FJ, González R, Dias JMA, del Río VD, Somoza L (2005) Holocene highstand deposits in the Gulf of Cadiz, SW Iberian Peninsula: a high-resolution record of hierarchical environmental changes. Marine Geology 219:109–131. doi: 10.1016/j.margeo.2005.06.005 CrossRefGoogle Scholar
  44. Lund DC, Tessin AC, Hoffman JL, Schmittner A (2015) Southwest Atlantic water mass evolution during the last deglaciation. Paleoceanography 30:477–494. doi: 10.1002/2014pa002657 CrossRefGoogle Scholar
  45. Martin L, Dominguez JML, Bittencourt ACSP (2003) Fluctuating Holocene sea levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. J Coast Res 19:101–124Google Scholar
  46. Martínez-Carreño N, García-Gil S, Cartelle V (2017) An unusual Holocene fan-shaped subaqueous prograding body at the back of the Cíes Islands ridge (Ría de Vigo, NW Spain): geomorphology, facies and stratigraphic architecture. Marine Geology 385:13–26. doi: 10.1016/j.margeo.2016.11.015 CrossRefGoogle Scholar
  47. Massari F, Chiocci F (2006) Biocalcarenite and mixed cool-water prograding bodies of the Mediterranean Pliocene and Pleistocene: architecture, depositional setting and forcing factors. Geological Society of London, Special Publication 255:95–120. doi: 10.1144/GSL.SP.2006.255.01.08 CrossRefGoogle Scholar
  48. Meireles R, Quartau R, Ramalho RS, Rebelo AC, Madeira J, Zanon V et al (2013) Depositional processes on oceanic island shelves – evidence from storm-generated Neogene deposits from the mid-North Atlantic. Sedimentology 60:1769–1785. doi: 10.1111/sed.12055
  49. Mitchell NC, Masselink G, Huthnance JM, Fernandez-Salas LM, Lobo FJ (2012) Depths of modern coastal sand clinoforms. J Sed Res 82:469–481. doi: 10.2110/jsr.2012.40 CrossRefGoogle Scholar
  50. Ortega-Sánchez M, Lobo FJ, López-Ruiz A, Losada MA, Fernández-Salas LM (2014) The influence of shelf-indenting canyons and infralittoral prograding wedges on coastal morphology: the Carchuna system in Southern Spain. Marine Geology 347:107–122. doi: 10.1016/j.margeo.2013.11.006 CrossRefGoogle Scholar
  51. Paixão S (2008) Transporte de volume e condições hidrográficas no Canal de São Sebastião. MSc Thesis. University of São PauloGoogle Scholar
  52. Patruno S, Hampson GJ, Jackson CAL (2015) Quantitative characterisation of deltaic and subaqueous clinoforms. Earth Science Reviews 142:79–119. doi: 10.1016/j.earscirev.2015.01.004 CrossRefGoogle Scholar
  53. Pianca C, Mazzini PLF, Siegle E, (2010) Brazilian offshore wave climate based on NWW3 reanalysis. Braz J Oceanogr 58:53–70.Google Scholar
  54. Piola AR, Campos EJD, Möller OO, Charo M, Martinez C (2000) Subtropical shelf front off eastern South America. Journal of Geophysical Research: Oceans 105:6565–6578. doi: 10.1029/1999jc000300
  55. Quartau R, Tempera F, Mitchell NC, Pinheiro LM, Duarte H, Brito PO et al (2012) Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass-wasting processes. Geochemistry, Geophysics, Geosystems 13:Q04012. doi: 10.1029/2011GC003987 CrossRefGoogle Scholar
  56. Quartau R, Hipólito A, Romagnoli C, Casalbore D, Madeira J, Tempera F (2014) The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: insights from Terceira Island (Azores). Geochemistry, Geophysics, Geosystems 15(5):1801–1826. doi: 10.1002/2014GC005248
  57. Quartau R, Madeira J, Mitchell NC, Tempera F, Silva PF, Brandão F (2015) The insular shelves of the Faial-Pico Ridge: a morphological record of its geologic evolution (Azores archipelago). Geochemistry, Geophysics, Geosystems 16:1401–1420. doi: 10.1002/2015GC005733
  58. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2016) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887. doi: 10.2458/azu_js_rc.55.16947 CrossRefGoogle Scholar
  59. Silva LS, Miranda LB, Castro Filho BM (2004) Estudo numérico da circulação e da estrutura termohalina na região adjacente à ilha de São Sebastião (SP). Revista Brasileira de Geofísica 22:197–221. doi: 10.1590/s0102-261x2004000300001
  60. Silva LS, Miranda LB, CastroFilho BM (2005) Numerical study of circulation and thermohaline structure in the São Sebastião channel. Rev Brasil Geofís 23. doi: 10.1590/s0102-261x2005000400005
  61. Sousa PHGO, Siegle E, Tessler MG (2013) Vulnerability assessment of Massaguaçú Beach (SE Brazil). Ocean Coast Manage 77:24–30. doi: 10.1016/j.ocecoaman.2012.03.003 CrossRefGoogle Scholar
  62. Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY, Chen HS, Gerald VM (2002) Development and implementation of wind-generated ocean surface wave models at NCEP. American Meteorological Society 17:311–333. doi: 10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2
  63. Vicalvi MA, Costa MPA, Kowsmann RO (1978) Depressão de Abrolhos: uma paleolaguna Holocênica na plataforma continental leste Brasileira. Boletim Técnico da Petrobrás 21:279–286Google Scholar
  64. Walsh JP, Nittrouer CA (2009) Understanding fine-grained river-sediment dispersal on continental margins. Marine Geology 263:34–45. doi: 10.1016/j.margeo.2009.03.016 CrossRefGoogle Scholar
  65. Xu K, Li A, Liu JP, Milliman JD, Yang Z, Liu C-S, Kao S-J, Wan S, Xu F (2012) Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system. Marine Geology 291-294:176–191. doi: 10.1016/j.margeo.2011.06.003 CrossRefGoogle Scholar
  66. Yang ZS, Liu JP (2007) A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology 240:169–176. doi: 10.1016/j.margeo.2007.02.008 CrossRefGoogle Scholar
  67. Zembruscki SG (1979) Geomorfologia da margem continental sul brasileira e das bacias oceânicas adjacentes. In: Chaves HAF (ed) Geomorfologia da margem continental brasileira e áreas oceânicas adjacentes. Petrobrás, Rio de Janeiro, pp 129–177Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Oceanographic Institute of the University of São PauloSão PauloBrazil
  2. 2.Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaGranadaSpain
  3. 3.Instituto de Oceanografia y Cambio Global (IOCAG)Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  4. 4.Institute of Energy and Environment of the University of São PauloSão PauloBrazil

Personalised recommendations