Geo-Marine Letters

, Volume 37, Issue 5, pp 457–474 | Cite as

A computational investigation of the interstitial flow induced by a variably thick blanket of very fine sand covering a coarse sand bed

Original

Abstract

Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical ‘flume tank’ model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities (U1–5=10–30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.

Supplementary material

367_2017_502_MOESM1_ESM.pdf (320 kb)
ESM 1(PDF 319 kb)

References

  1. Allen JRL (1970) Physical processes of sedimentation. Unwin University Books, LondonGoogle Scholar
  2. Barkla HM, Auchterlonie LJ (1971) Magnus or robins effect on rotating spheres. J Fluid Mech 47:437–447. doi:10.1017/S0022112071001150 CrossRefGoogle Scholar
  3. Bartzke G, Huhn K (2015) A conceptual model of pore-space blockage in mixed sediments using a new numerical approach, with implications for sediment bed stabilization. Geo-Mar Lett 35:189–202CrossRefGoogle Scholar
  4. Bartzke G, Bryan KR, Pilditch CA, Huhn K (2013) On the stabilizing influence of silt on sand beds. J Sediment Res 83:691–703. doi:10.2110/jsr.2013.57 CrossRefGoogle Scholar
  5. Bear J, Verruijt A (2012) Modeling groundwater flow and pollution. Springer, HeidelbergGoogle Scholar
  6. Billerbeck M, Werner U, Polerecky L, Walpersdorf E, deBeer D, Huettel M (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Progr Ser 326:61–76. doi:10.3354/MEPS326061 CrossRefGoogle Scholar
  7. Black K, Paterson DM (1997) Measurement of the erosion potential of cohesive marine sediment: a review of current in situ technology. J Mar Environ Eng 4:43–83Google Scholar
  8. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechniqe 29:47–65CrossRefGoogle Scholar
  9. Cunningham E (1910) On the velocity of steady fall of spherical particles through a fluid medium. Proc R Soc Lond A 83:357–365. doi:10.1098/rspa.1910.0024 CrossRefGoogle Scholar
  10. Drake TG, Calantoni J (2001) Discrete particle model for sheet flow sediment transport in the nearshore. J Geophys Res Oceans 106:19859–19868. doi:10.1029/2000JC000611 CrossRefGoogle Scholar
  11. Durán O, Andreotti B, Claudin P (2012) Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys Fluids 24:103306. doi:10.1063/1.4757662 CrossRefGoogle Scholar
  12. Eisbacher GH (1996) Einführung in die Tektonik. Spektrum, StuttgartGoogle Scholar
  13. Grass AJ (1971) Structural features of turbulent flow over smooth and rough boundaries. J Fluid Mech 50:233–255. doi:10.1017/S0022112071002556 CrossRefGoogle Scholar
  14. Harris JW, Stöcker H (1998) Handbook of mathematics and computational science. Springer, HeidelbergCrossRefGoogle Scholar
  15. Heald J, McEwan I, Tait S (2004) Sediment transport over a flat bed in a unidirectional flow: simulations and validation. Philos Trans Ser A Math Phys Eng Sci 362:1973–1986. doi:10.1098/rsta.2004.1426 CrossRefGoogle Scholar
  16. Healy T (2002) Muddy coasts of mid-latitude oceanic islands on an active plate margin–New Zealand. In: Healy T, Healy J-A (eds) Muddy coasts of the world – processes, deposits and function, Proceedings in marine science, vol 4. Elsevier, Amsterdam, pp 347–374CrossRefGoogle Scholar
  17. Huettel M, Webster IT (2001) Porewater flow in permeable sediments. In: Bernard P, Boudreau B, Jorgensen B (eds) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, New York, pp 144–179Google Scholar
  18. Itasca (2004a) FLAC 3D 3.1 Manual. Itasca Consulting Group, Inc., MinneapolisGoogle Scholar
  19. Itasca (2004b) PFC 3D 3.1 Manual. Itasca Consulting Group, Inc., MinneapolisGoogle Scholar
  20. Jacobs W, Le Hir P, Van Kesteren W, Cann P (2011) Erosion threshold of sand-mud mixtures. Cont Shelf Res 31:14–25. doi:10.1016/j.csr.2010.05.012 CrossRefGoogle Scholar
  21. Jiang Z, Haff PK (1993) Multiparticle simulation methods applied to the micromechanics of bed-load transport. Water Resour Res 29:399–412. doi:10.1029/92WR02063 CrossRefGoogle Scholar
  22. Julien PY (1998) Erosion and sedimentation. Cambridge University Press, CambridgeGoogle Scholar
  23. Kock I, Huhn K (2007) Influence of particle shape on the frictional strength of sediments - a numerical case study. Sediment Geol 196:217–233. doi:10.1016/j.sedgeo.2006.07.011 CrossRefGoogle Scholar
  24. Komar PD (1987) Selective grain entrainment by a current from a bed of mixed sizes - a reanalysis. J Sediment Petrol 57:203–211. doi:10.1306/212F8AE4-2B24-11D7-8648000102C1865D Google Scholar
  25. Le Hir P, Cann P, Waeles B, Jestin H, Bassoullet P (2008) Erodibility of natural sediments: experiments on sand/mud mixtures from laboratory and field erosion tests. In: Kusuda T, Yamanishi H, Spearman J, Gailani JZ (eds) Sediment and ecohydraulics, Proceedings in marine science, vol 9. Elsevier, Amsterdam, pp 137–153Google Scholar
  26. Leeder MR (1999) Sedimentology and sedimentary basins: from turbulence to tectonics. Blackwell Science, OxfordGoogle Scholar
  27. Mao L, Cooper JR, Frostick LE (2011) Grain size and topographical differences between static and mobile Armour layers. Earth Surf Proc Landf 36:1321–1334. doi:10.1002/esp.2156 CrossRefGoogle Scholar
  28. McCave IN (1984) Erosion, transport and deposition of fine-grained marine sediments. Geol Soc Lond Spec Publ 15:35–69CrossRefGoogle Scholar
  29. Middleton V (2003) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic, DordrechtGoogle Scholar
  30. Miller MC, McCave IN, Komar PD (1977) Threshold of sediment motion under unidirectional currents. Sedimentology 24:507–527. doi:10.1111/j.1365-3091.1977.tb00136.x CrossRefGoogle Scholar
  31. Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25. doi:10.1016/S0378-3839(96)00002-6 CrossRefGoogle Scholar
  32. Mouilleron H, Charru F, Eiff O (2009) Inside the moving layer of a sheared granular bed. J Fluid Mech 628:229–239. doi:10.1017/S0022112009006636 CrossRefGoogle Scholar
  33. Panagiotopoulos I, Voulgaris G, Collins MB (1997) The influence of clay on the threshold of movement of fine sandy beds. Coast Eng 32:19–43. doi:10.1016/S0378-3839(97)00013-6 CrossRefGoogle Scholar
  34. Paphitis D (2001) Sediment movement under unidirectional flows: an assessment of empirical threshold curves. Coast Eng 43:227–245. doi:10.1016/S0378-3839(01)00015-1 CrossRefGoogle Scholar
  35. Parker G, Klingeman PC (1982) On why gravel bed streams are paved. Water Resour Res 18:1409–1423. doi:10.1029/WR018i005p01409 CrossRefGoogle Scholar
  36. Partheniades E (1965) Erosion and deposition of cohesive soils. ASCE, J Hydraul Div Proc 91(HYl):105–138Google Scholar
  37. Patil VA, Liburdy JA (2013) Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed. Exp Fluids 54:1–19. doi:10.1007/s00348-013-1497-3 CrossRefGoogle Scholar
  38. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271. doi:10.1016/0021-9991(72)90065-4 CrossRefGoogle Scholar
  39. Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol Oceanogr 49:693–705. doi:10.2307/3597786 CrossRefGoogle Scholar
  40. Schlichting H, Gersten K, Gersten K (2000) Boundary-layer theory. Springer, HeidelbergCrossRefGoogle Scholar
  41. Schmeeckle MW (2014) Numerical simulation of turbulence and sediment transport of medium sand. J Geophys Res Earth Surf 119:1240–1262. doi:10.1002/2013JF002911 CrossRefGoogle Scholar
  42. Shields A (1936) Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau und Schiffbau 26:26Google Scholar
  43. Shuwei Z, Cioppa MT, Shihong Z (2010) Spatial variations in particle size and magnetite concentration on Cedar Beach: implications for grain-sorting processes, western Lake Erie, Canada. Acta Geol Sinica (English Edition) 84:1520–1532. doi:10.1111/j.1755-6724.2010.00345.x CrossRefGoogle Scholar
  44. Soulsby R (1997) Dynamics of marine sands. A manual for practical applications, Thomas Telford, LondonGoogle Scholar
  45. Soulsby R, Whitehouse R (1997) Threshold of sediment motion in coastal environments. In: Centre for Advanced Engineering, Pacific Coasts and Ports ‘97, Proc 13th Australasian Coastal and Ocean Engineering Conf and 6th Australasian Port and Harbour Conf, 7–11 September 1997, Christchurch. University of Canterbury, Christchurch, vol 1, pp 145–150Google Scholar
  46. Strikwerda JC (1989) Finite difference schemes and partial differential equations. Wadsworth, Pacific GroveGoogle Scholar
  47. Sutherland A (1987) Static Armour layers by selective erosion. In: Thorne CR, Bathurst JCR, Hey D (eds) Sediment transport in gravel-bed rivers. Wiley, London, pp 243–280Google Scholar
  48. Torfs H (1997) Erosion of mixed cohesive/non cohesive sediments in uniform flow. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 245–252Google Scholar
  49. Torfs H, Jiang J, Mehta AJ (2001) Assessment of the erodibility of fine/coarse sediment mixtures. Coast Estuar Sediment Proc 3:109–123CrossRefGoogle Scholar
  50. Tucker ME (1981) Sedimentary petrology. Blackwell, OxfordGoogle Scholar
  51. van Ledden M, van Kesteren WGM, Winterwerp JC (2004) A conceptual framework for the erosion behaviour of sand–mud mixtures. Cont Shelf Res 24:1–11. doi:10.1016/j.csr.2003.09.002 CrossRefGoogle Scholar
  52. van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110:1431–1456. doi:10.1061/(asce)0733-9429(1984)110:10(1431) CrossRefGoogle Scholar
  53. Venditti JG, Dietrich WE, Nelson PA, Wydzga MA, Fadde J, Sklar L (2010) Effect of sediment pulse grain size on sediment transport rates and bed mobility in gravel bed rivers. J Geophys Res Earth Surf 115:F03039. doi:10.1029/2009JF001418 CrossRefGoogle Scholar
  54. Whitehouse R, Soulsby R, Roberts W, Mitchener H (2000) Dynamics of estuarine muds. A manual for practical applications, Thomas Telford, LondonCrossRefGoogle Scholar
  55. Wiberg PL, Smith JD (1987) Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour Res 23:1471–1480CrossRefGoogle Scholar
  56. Wilcock PR (2001) Toward a practical method for estimating sediment-transport rates in gravel-bed rivers. Earth Surf Proc Landf 26:1395–1408CrossRefGoogle Scholar
  57. Williamson HJ (1991) Tidal transport of mud/sand mixtures - a literature review. Sediment Distributions Report SR 286, WallingfordGoogle Scholar
  58. Winterwerp JC, Van Kesteren WGM (2004) Introduction to the physics of cohesive sediment in the marine environment. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.MARUM – Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Coastal Marine Group, School of ScienceUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations