Geo-Marine Letters

, Volume 37, Issue 5, pp 515–526 | Cite as

Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)

  • Tanja HörnerEmail author
  • Rüdiger Stein
  • Kirsten Fahl


The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at ~3, ~2, ~1.3 and ~0.3 ka. Spectral analysis of the IP25 record revealed ~400- and ~950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.


Dinosterol IP25 Record Siberian River Runoff PIP25 Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank all members of the BP00 campaign with the research vessel RV Akademik Boris Petrov as part of the German-Russian research project SIRRO (Siberian River Run-off), funded by the Federal Ministry of Education and Research, for providing the sediment material on which this study relies. Many thanks to the Federal Ministry of Education and Research (Transdrift, grant no. 03G0833B) and the Alfred Wegener Institute for funding this study. Thanks to Simon Belt and colleagues (Biogeochemistry Research Centre, University of Plymouth) for providing the internal standard for IP25 analysis. Also acknowledged are constructive comments from M.-S. Seidenkrantz and the editors.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P et al (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151CrossRefGoogle Scholar
  2. Andreev AA, Klimanov VA (2000) Quantitative Holocene climatic reconstruction from Arctic Russia. J Paleolimnol 24:81–91CrossRefGoogle Scholar
  3. Andreev AA, Peteet DM, Tarasov PE, Filimonova L, Romanenko FA, Sulerzhitsky LD (2001) Late Pleistocene interstadial environment on Faddeyevskiy Island, East Siberian Sea, Russia. Arct Antarct Alp Res 33:28–35CrossRefGoogle Scholar
  4. Andrews JT, Jennings AE, Moros M, Hillaire-Marcel C, Eberle D (2006) Is there a pervasive Holocene ice-rafted debris (IRD) signal in the northern North Atlantic? The answer appears to be either no, or it depends on the proxy! PAGES News 14(2):7–9Google Scholar
  5. Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Glob Planet Chang 60:28–41CrossRefGoogle Scholar
  6. Bauch HA, Mueller-Lupp T, Taldenkova E, Spielhagen RF, Kassens H, Grootes PM, Thiede J, Heinemeier J, Petryashov VV (2001) Chronology of the Holocene transgression at the North Siberian margin. Glob Planet Chang 31:125–139CrossRefGoogle Scholar
  7. Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25CrossRefGoogle Scholar
  8. Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27CrossRefGoogle Scholar
  9. Berben SMP, Husum K, Cabedo-Sanz P, Belt ST (2014) Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea. Clim Past 10:181–198CrossRefGoogle Scholar
  10. Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, New YorkGoogle Scholar
  11. Bradley RS, England JH (2008) The Younger Dryas and the sea of ancient ice. Quat Res 70:1–10CrossRefGoogle Scholar
  12. Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197. doi: 10.1038/ncomms5197 Google Scholar
  13. Cabedo-Sanz P, Belt ST, Knies J, Husum K (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quat Sci Rev 79:74–86CrossRefGoogle Scholar
  14. Chapman MR, Shackleton NJ (2000) Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene. The Holocene 10(3):287–291CrossRefGoogle Scholar
  15. Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009-2010: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37, L17707. doi: 10.1029/2010GL044256 Google Scholar
  16. Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjokulen, central southern Norway. The Holocene 4:381–398CrossRefGoogle Scholar
  17. Darby DA, Ortiz JD, Grosch CE, Lund SP (2012) 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nat Geosci 5:897–900CrossRefGoogle Scholar
  18. de Vernal A, Hillaire-Marcel C, Rochon A, Fréchette B, Henry M, Solignac BS (2013) Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quat Sci Rev 79:111–121CrossRefGoogle Scholar
  19. Dieckmann GS, Hellmer HH (2008) The importance of sea ice: an overview. In: Thomas DN, Diekmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell Science, Oxford, pp 1–21Google Scholar
  20. Divine D, Korsnes R, Makshtas A (2004) Temporal and spatial variations of shore-fast ice in the Kara Sea. Cont Shelf Res 24(15):1717–1736CrossRefGoogle Scholar
  21. Divine D, Korsnes R, Makshtas A, Godtliebsen F, Svendsen H (2005) Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea. J Geophys Res 110, C09013. doi: 10.1029/2004JC002706 CrossRefGoogle Scholar
  22. Fahl K, Stein R (1999) Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: problems and perspectives. Mar Chem 63:293–309CrossRefGoogle Scholar
  23. Fahl K, Stein R (2007) Biomarker records, organic carbon accumulation, and river discharge in the Holocene southern Kara Sea (Arctic Ocean). Geo-Mar Lett 27:13–25CrossRefGoogle Scholar
  24. Fahl K, Stein R (2012) Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea ice cover: new insights from biomarker proxy records. Earth Planet Sci Lett 351–352:123–133CrossRefGoogle Scholar
  25. Fahl K, Stein R, Gaye-Haake B, Gebhardt C, Kodina LA, Unger D, Ittekkot V (2003) Biomarkers in surface sediments from the Ob and Yenisei estuaries and southern Kara Sea: evidence for particulate organic carbon sources, pathways, and degradation. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, pp 329–348Google Scholar
  26. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  27. Faust JC, Fabian K, Milzer G, Giraudeau J, Knies J (2016) Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years. Earth Planet Sci Lett 435:84–93CrossRefGoogle Scholar
  28. Forwick M, Vorren TO (2007) Holocene mass-transport activity and climate in outer Isfjorden, Spitsbergen: marine and subsurface evidence. The Holocene 17:707–716CrossRefGoogle Scholar
  29. Francis JA, Hunter E, Key JR, Wang X (2005) Clues to variability in Arctic minimum sea ice extent. Geophys Res Lett 32, L21501. doi: 10.1029/2005GL024376 CrossRefGoogle Scholar
  30. Funder S, Goosse H, Jepsen H, Kaas E, Kjær KH, Korsgaard NJ, Larsen NK, Linderson H, Lyså A, Möller P, Olsen J, Willerslev E (2011) A 10,000-Year record of Arctic Ocean sea-ice variability—view from the beach. Science 333(6043):747–750CrossRefGoogle Scholar
  31. Gordeev VV, Martin JM, Sidorov IS, Sidorova MV (1996) A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci 296:664–691CrossRefGoogle Scholar
  32. Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554CrossRefGoogle Scholar
  33. Hald M, Ebbesen H, Forwick M, Godtliebsen F, Khomenko L, Korsun S, Olsen LR, Vorren TO (2004) Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quat Sci Rev 23:2075–2088CrossRefGoogle Scholar
  34. Hörner T, Stein R, Fahl K, Birgel D (2016) Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean) – a high-resolution biomarker study. Quat Sci Rev 143:133–149CrossRefGoogle Scholar
  35. Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y, Tian J, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301(5641):1890–1893CrossRefGoogle Scholar
  36. Huang WY, Meinschein WG (1976) Sterols as source indicators of organic material in sediments. Geochim Cosmochim Acta 40:323–330CrossRefGoogle Scholar
  37. Huntley B, Baillie M, Grove JM, Hammer CU, Harrison SP, Jacomet S, Jansen E, Karlén W, Koç N, Luterbacher J, Negendank J, Schibler J (2002) Holocene palaeoenvironmental changes in north-west Europe: climatic implications and the human dimension. In: Wefer G, Berger WH, Behre K-E, Jansen E (eds) Climate development and history of the North Atlantic realm. Springer, Berlin, pp 259–298CrossRefGoogle Scholar
  38. Jakobsson M, Mayer LA, Coakley B, Dowdeswell JA, Forbes S et al (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39, L12609. doi: 10.1029/2012GL052219 Google Scholar
  39. Jansen HL, Simonsen JR, Dahl SO, Bakke J, Nielsen PR (2016) Holocene glacier and climate fluctuations of the maritime ice cap Høgtuvbreen, northern Norway. The Holocene 26(5):736–755CrossRefGoogle Scholar
  40. Jiang H, Muscheler R, Björck S, Seidenkrantz M-S, Olsen J, Scha L, Sjolte J, Eiríksson J, Ran L, Knudsen K-L, Knudsen MF (2015) Solar forcing of Holocene summer sea-surface temperatures in the northern North Atlantic. Geol Soc Am 43(3):203–206Google Scholar
  41. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH (2004) Arctic climate change: observed and modelled temperature and sea ice variability. Tellus A 56:328–341CrossRefGoogle Scholar
  42. Karlén W (1993) Glaciological, sedimentological and paleobotanical data indicating Holocene climatic change in Northern Fennoscandia. In: Frenzel B (ed) Oscillations of alpine and polar tree limits in the Holocene. Gustav Fischer, Stuttgart, pp 69–83Google Scholar
  43. Keigwin LD, Pickart RS (1999) Slope water current over the Laurentian fan on interannual to millennial time scales. Science 286:520–523CrossRefGoogle Scholar
  44. Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479(7374):509–512CrossRefGoogle Scholar
  45. Koç N, Jansen E, Haflidason H (1993) Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quat Sci Rev 12:115–140CrossRefGoogle Scholar
  46. Kraus M, Matthiessen J, Stein R (2003) A high-resolution Holocene marine pollen record from the northern Yenisei Estuary (southeastern Kara Sea) and paleoenvironmental implications. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, pp 435–456Google Scholar
  47. Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  48. Lindsay RW, Zhang J (2005) Thinning of Arctic seas ice, 1988–2003: have we passed a tippling point? J Clim 18:4879–4894CrossRefGoogle Scholar
  49. Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelplece W, Trivelplece S (1997) Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900CrossRefGoogle Scholar
  50. Lubinski DJ, Forman SL, Miller GH (1999) Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80°N. Quat Sci Rev 18(1):85–108CrossRefGoogle Scholar
  51. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, González-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2001) Extending NAO reconstructions back to 1500. Atmos Sci Lett 2:114–124CrossRefGoogle Scholar
  52. Mangerud J, Gulliksen S (1975) Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quat Res 5:273–296CrossRefGoogle Scholar
  53. Maslanik J, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007a) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea‐ice loss. Geophys Res Lett 34, L24501. doi: 10.1029/2007GL032043 CrossRefGoogle Scholar
  54. Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007b) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34, L03711. doi: 10.1029/2006GL028269 Google Scholar
  55. Méheust M, Stein R, Fahl K, Max L, Riethdorf JR (2016) High-resolution IP25-based reconstruction of sea ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo-Mar Lett 36:101–111CrossRefGoogle Scholar
  56. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Org Geochem 27(5/6):213–250CrossRefGoogle Scholar
  57. Müller J, Stein R (2014) High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts. Earth Planet Sci Lett 403:446–455CrossRefGoogle Scholar
  58. Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306:137–148CrossRefGoogle Scholar
  59. Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14CrossRefGoogle Scholar
  60. Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11:267–280CrossRefGoogle Scholar
  61. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5:808–812CrossRefGoogle Scholar
  62. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9CrossRefGoogle Scholar
  63. Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. EOS Trans Am Geophys Union 77(39):379CrossRefGoogle Scholar
  64. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  65. Polyakova YI, Stein R (2004) Holocene paleoenvironmental implications of diatom and organic carbon records from the Southeastern Kara Sea (Siberian Margin). Quat Res 62:256–266CrossRefGoogle Scholar
  66. Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten H-W, Lisitzin AP, Shevchenko VP, Schirmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) The Arctic Ocean organic carbon cycle: present and past. Springer, Berlin, pp 33–56CrossRefGoogle Scholar
  67. Rasmussen TL, Forwick M, Mackensen A (2012) Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Mar Micropaleontol 94–95:80–90CrossRefGoogle Scholar
  68. Rigor IG, Wallace JM (2004) Variations in the age of Arctic sea‐ice and summer sea‐ice extent. Geophys Res Lett 31, L09401. doi: 10.1029/2004GL019492 CrossRefGoogle Scholar
  69. Rimbu N, Lohmann G, Kim J-H, Arz HW, Schneider R (2003) Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys Res Lett 30(6):1280. doi: 10.1029/2002GL016570 CrossRefGoogle Scholar
  70. Sarnthein M, Van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32:447–461CrossRefGoogle Scholar
  71. Schulz M, Paul A (2002) Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm. In: Wefer G, Berger WH, Behre KE, Jansen E (eds) Climate development and history of the North Atlantic realm. Springer, Berlin, pp 41–54CrossRefGoogle Scholar
  72. Seidenkrantz M-S, Roncaglia L, Fischel A, Heilmann-Clausen C, Kuijpers A, Moros M (2008) Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland. Mar Micropaleontol 68(1/2):66–83CrossRefGoogle Scholar
  73. Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11:527–537CrossRefGoogle Scholar
  74. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  75. Shiklomanov IA, Skakalsky BG (1994) Studying water, sediment and contaminant run-off of Siberian Rivers. Modern status and prospects. Archit Res US 8:295–306Google Scholar
  76. Simstich J, Stanovoy V, Bauch D, Erlenkeuser H, Spielhagen RF (2004) Holocene variability of bottom water hydrography on the Kara Sea shelf (Siberia) depicted in multiple single-valve analyses of stable isotopes in ostracods. Mar Geol 206:147–164CrossRefGoogle Scholar
  77. Smik L, Cabedo-Sanz P, Belt ST (2016) Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: a further development of the PIP25 index. Org Geochem 92:63–69CrossRefGoogle Scholar
  78. Smith SD, Muench RD, Pease CH (1990) Polynyas and leads: an overview of physical processes and environment. J Geophys Res 95(C69):9461–9479CrossRefGoogle Scholar
  79. Stein R, Stepanets OV (2001) The German–Russian project on Siberian River Run-Off (SIRRO): scientific cruise report of the Kara Sea expedition “SIRRO 2000” of RV “Akademik Boris Petrov” and first results. Rep Pol Mar Res 393Google Scholar
  80. Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) (2003a) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, AmsterdamGoogle Scholar
  81. Stein R, Fahl K, Dittmers K, Niessen F, Stepanets OV (2003b) Holocene siliciclastic and organic carbon fluxes in the Ob and Yenisei estuaries and the adjacent inner Kara Sea: quantification, variability, and paleoenvironmental implications. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, p 401–434Google Scholar
  82. Stein R, Dittmers K, Fahl K, Kraus M, Matthiessen J, Niessen F, Pirrung M, Ye P, Schoster F, Steinke T, Fütterer DK (2004) Arctic (palaeo) river discharge and environmental change: evidence from Holocene Kara Sea sedimentary records. Quat Sci Rev 23:1485–1511CrossRefGoogle Scholar
  83. Stein R, Fahl K, Müller J (2012) Proxy reconstruction of Cenozoic Arctic Ocean sea ice history - from IRD to IP25. Polarforschung 82:37–71Google Scholar
  84. Stein R, Fahl K, Schreck M, Knorr G, Niessen F, Forwick M, Gebhardt C, Jensen L, Kaminski M, Kopf A, Matthiessen J, Jokat W, Lohmann G (2016a) Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat Commun 7:11148. doi: 10.1038/ncomms11148 CrossRefGoogle Scholar
  85. Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S-I (2016b) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci. doi: 10.1002/jqs.2929 Google Scholar
  86. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34, L09501. doi: 10.1029/2007GL029703 CrossRefGoogle Scholar
  87. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110:1005–1027CrossRefGoogle Scholar
  88. Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res 44:341–354CrossRefGoogle Scholar
  89. Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1152CrossRefGoogle Scholar
  90. Taldenkova E, Bauch HA, Gottschalk J, Nikolaev S, Rostovtseva Y, Pogodina I, Ovsepyan Y, Kandiano E (2010) History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quat Sci Rev 29:3919–3935CrossRefGoogle Scholar
  91. Tarasov L, Peltier W (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435:662–665CrossRefGoogle Scholar
  92. Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  93. Thompson DW, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  94. Velichko AA, Dolukhanov PM, Rutter NW, Catto NR (1997) Quaternary of northern Eurasia: late Pleistocene and Holocene landscapes, stratigraphy and environments. Quat Int 41(42):43–51CrossRefGoogle Scholar
  95. Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111, D09102. doi: 10.1029/2005JD006031 CrossRefGoogle Scholar
  96. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99CrossRefGoogle Scholar
  97. Volkman JK (2006) Lipid markers for marine organic matter. In: Volkman JK (ed) Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin, pp 27–70CrossRefGoogle Scholar
  98. Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20:7–15CrossRefGoogle Scholar
  99. Vorobyova GA (1994) Paleoclimates around Lake Baikal in Pleistocene and the Holocene. In: Baikal as a nature laboratory for global change, vol 2. Lisna, Irkutsk, pp 54–55Google Scholar
  100. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  101. Weckström K, Massé G, Collins LG, Hanhijärvi S, Bouloubassi I, Sicre MA, Seidenkrantz M-S, Schmidt S, Andersen TJ, Hill B, Kuijpers A (2013) Evaluation of the sea ice proxy IP25 against observational and diatom proxy data in the SW Labrador Sea. Quat Sci Rev 79:53–62CrossRefGoogle Scholar
  102. Willmes S, Heinemann G (2016) Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003-2015. Remote Sens 8:4. doi: 10.3390/rs8010004 CrossRefGoogle Scholar
  103. Zhang J, Lindsay R, Schweiger A, Rigor I (2012) Recent changes in the dynamic properties of declining Arctic sea ice: a model study. Geophys Res Lett 39, L20503. doi: 10.1029/2012GL053545 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations