Advertisement

Geo-Marine Letters

, Volume 37, Issue 5, pp 501–513 | Cite as

Late glacial to Holocene water level and climate changes in the Gulf of Gemlik, Sea of Marmara: evidence from multi-proxy data

  • Betül Filikci
  • Kürşad Kadir Eriş
  • Namık Çağatay
  • Asen Sabuncu
  • Alina Polonia
Original

Abstract

Multi-proxy analyses of new piston core M13-08 together with seismic data from the Gulf of Gemlik provide a detailed record of paleoceanographic and paleoclimatic changes with special emphasis on the timing of the connections between the Sea of Marmara (SoM) and the Gulf of Gemlik during the late Pleistocene to Holocene. The deposition of a subaqueous delta sourced from the Armutlu River to the north is attributed to the lowstand lake level at −60 m in the gulf prior to 13.5 cal ka BP. On the basis of the seismic data, it is argued that the higher lake level (−60 m) in the gulf compared to the SoM level (−85 m) attests to its disconnection from the SoM during the late glacial period. Ponto-Caspian assemblages in the lacustrine sedimentary unit covering the time period between 13.5 and 12 cal ka BP represent a relict that was introduced into the gulf by a Black Sea outflow during the marine isotope stage 3 interstadial. Contrary to the findings of previous studies, the data suggest that such an outflow into the Gulf of Gemlik during the late glacial period could have occurred only if the SoM lake level (−85 m) was shallower than the sill depth (−55 m) of the gulf in the west. A robust age model of the core indicates the connection of the gulf with the marine SoM at 12 cal ka BP, consistent with the sill depth (−55 m) of the gulf on the global sea level curve. Strong evidence of a marine incursion into the gulf is well documented by the μ-XRF Sr/Ca data. The available profiles of elemental ratios in core M13-08, together with the age-depth model, imply that a warm and wet climate prevailed in the gulf during the early Holocene (12–10.1 cal ka BP), whereas the longest drought occurred during the middle Holocene (8.2–5.4 cal ka BP). The base of the main Holocene sapropel in the gulf is dated at 10.1 cal ka BP, i.e., 500 years younger than its equivalent in the SoM. The late Holocene is earmarked by warm and wet climate periods (5.0–4.2 and 4.2–2.7 cal ka BP) with some brief cold/dry periods (4.2 and 2.7–0.9 cal ka BP).

Keywords

Holocene Total Organic Carbon Content Marine Isotope Stage Accelerate Mass Spectroscopy North Anatolian Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the officers, crew, and scientific staff of the R/V Urania cruise for their help in data collection from the Gulf of Gemlik. We also acknowledge Dursun Acar for help with core analyses at the EMCOL laboratory. Discussions with Prof. Mehmet Sakınç, Bora Ön and Demet Biltekin were very instructive. Support for core analyses and student grants was provided by TÜBITAK (project number 115Y033). Also gratefully acknowledged are constructive assessments by three anonymous reviewers for an earlier version of this article.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

References

  1. Adatepe F, Demirel S, Alpar B (2002) Tectonic setting of the southern Marmara Sea region: based on seismic reflection data and gravity modelling. Mar Geol 190(1):383–395CrossRefGoogle Scholar
  2. Akbulak C (2009) Human and economic geographical investigation of Iznik Basin. Eurasia Ethnography Foundation Publications, AnkaraGoogle Scholar
  3. Aksu AE, Hiscott RN, Yaşar D, Işler FI, Marsh S (2002) Seismic stratigraphy of Late Quaternary deposits from the southwestern Black Sea shelf: evidence for non-catastrophic variations in sea-level during the last 10000 yr. Mar Geol 190:61–94CrossRefGoogle Scholar
  4. Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou D (1996) Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int 126(1):11–53CrossRefGoogle Scholar
  5. Badertscher S, Fleitmann D, Cheng H, Edwards RL, Göktürk OM, Zumbühl A, Leuenberge M, Tüysüz O (2011) Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nat Geosci 4:236–239CrossRefGoogle Scholar
  6. Barka AA, Kuşçu İ (1996) Extents of the North Anatolian fault in the Izmit, Gemlik and Bandırma Bays. Turk J Mar Sci 2:93–106Google Scholar
  7. Bar-Matthews M, Ayalon A, Kaufman A (1997) Late Quaternary paleoclimate in the Eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quat Res 47(2):155–168CrossRefGoogle Scholar
  8. Beşiktepe S, Sur Hİ, Özsoy E, Latif MA, Oğuz T, Ünlüata Ü (1994) Circulation and hydrography of the Marmara Sea. Prog Oceanogr 34:285–334CrossRefGoogle Scholar
  9. Burdige DJ (2006) Geochemistry of Marine Sediments, vol 398. Princeton University Press, PrincetonGoogle Scholar
  10. Büyükmeriç Y (2016) Postglacial floodings of the Marmara Sea: molluscs and sediments tell the story. Geo-Mar Lett 36:307–321CrossRefGoogle Scholar
  11. Çağatay MN, Görür N, Algan A, Eastoe CJ, Tchapalyga A, Ongan D, Kuhn T, Kuşçu İ (2000) Late Glacial-Holocene palaeoceanography of the Sea of Marmara: timing of connections with the Mediterranean and the Black Sea. Mar Geol 167:191–206CrossRefGoogle Scholar
  12. Çağatay MN, Balkıs N, Sancar Ü, Çakır Z (2009) Sediment geochemistry atlas of the Sea of Marmara and its importance in pollution and ecological studies. In: Özerler M, Sayın E (eds) The role of climatic and anthropogenic changes in marine ecosystems. Ecosystems’07, Izmir, Turkey, pp 165–182Google Scholar
  13. Çağatay MN, Öğretmen N, Damcı E, Stockhecke M, Sancar Ü, Eriş KK, Özeren S (2014) Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quat Sci Rev 104:97–116CrossRefGoogle Scholar
  14. Çağatay MN, Wulf S, Sancar Ü, Özmaral A, Vidal L, Henry P, Gasperini L (2015) The tephra record from the Sea of Marmara for the last ca. 70 ka and its palaeoceanographic implications. Mar Geol 361:96–110CrossRefGoogle Scholar
  15. Chepalyga AL (2007) The late glacial great flood in the Ponto-Caspian Basin. In: Yanko-Hombach V, Gilbert AS, Dolukhanov PM (eds) The Black Sea Flood question. Springer, Dordrecht, pp 119–148Google Scholar
  16. Cimerman F, Langer MR (1991) Mediterranean foraminifera. Slovenska akademija znanosti in umetnosti, LjubljanaGoogle Scholar
  17. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, OxfordGoogle Scholar
  18. Croudace W, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis. Geol Soc Lond Spec Publ 267:51–63CrossRefGoogle Scholar
  19. EİE (1993) Türkiye Akarsularında Sediment Gözlemleri ve Sediment Taşınım Miktarları. EİE İd Gen Müd, Ankara, pp 93–59Google Scholar
  20. Ergin M, Saydam C, Baştürk Ö, Erdem E, Yörük R (1991) Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chem Geol 91(3):269–285CrossRefGoogle Scholar
  21. Eriş KK, Ryan W, Çağatay MN, Sancar U, Lericolais G, Menot G, Bard E (2007) The timing and evolution of the post-glacial transgression across the Sea of Marmara shelf south of Istanbul. Mar Geol 243(1):57–76Google Scholar
  22. Eriş KK, Çağatay MN, Akçer S, Gasperini L, Mart Y (2011) Late glacial to Holocene sea-level changes in the Sea of Marmara: new evidence from high-resolution seismics and core studies. Geo-Mar Lett 31(1):1–18CrossRefGoogle Scholar
  23. Fischer G, Wefer G (eds) (1999) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, HeidelbergGoogle Scholar
  24. Gasperini L, Polonia A, Çağatay MN, Bortoluzzi G, Ferrante V (2011) Geological slip rates along the North Anatolian Fault in the Marmara region. Tectonics 30(6), TC6001. doi: 10.1029/2011TC002906 CrossRefGoogle Scholar
  25. Gökaşan E, Demirbag E, Oktay FY, Ecevitog B, Şimşek M, Yüce H (1997) On the origin of the Bosphorus. Mar Geol 140(1):183–199CrossRefGoogle Scholar
  26. Gökaşan E, Ergin M, Özyalvaç M, Sur HI, Tur H, Görüm T, Ustaömer T, Batuk FG, Alp H, Birkan H, Türket A, Gezgin E, Özturan M (2008) Factors controlling the morphological evolution of the Çanakkale Strait. Geo-Mar Lett 28:107–129CrossRefGoogle Scholar
  27. Hiscott RN, Aksu AE, Yaşar D, Kaminski MA, Mudie PJ, Kostylev VE, MacDonald JC, Isler FI, Lord AR (2002) Deltas south of the Bosphorus Strait record persistent Black Sea outflow to the Marmara Sea since ~10 ka. Mar Geol 190:95–118CrossRefGoogle Scholar
  28. Hiscott RN, Aksu AE, Mudie PJ, Kaminski MA, Abrajano T, Yaşar D, Rochon A (2007) The Marmara Sea gateway since ~16 ky BP: non-catastrophic causes of paleoceanographic events in the Black Sea at 8.4 and 7.15 ky BP. In: Yanko-Hombach V, Gilbert AS, Dolukhanov PM (eds) The Black Sea Flood question. Springer, Dordrecht, pp 89–117Google Scholar
  29. İslamoğlu Y (2002) Neoeuxinian–Holocene molluscan fauna of the southern part of the Marmara Sea between Gemlik and Bandırma Bay (NW Turkey). In: Yılmaz A (ed) Oceanography of the Eastern Mediterranean and Black Sea - Similarities and differences of two interconnected basins. TÜBİTAK Publishers, Ankara, pp 953–960Google Scholar
  30. İslamoğlu Y and Chepalyga AL (1998) The environmental changes determined with molluscan assemblages during the Neoeuxinian-Holocene stages in the Sea of Marmara. Geol Bull Turkey 41:55–62Google Scholar
  31. Kaminski MA, Aksu AE, Hiscott RN, Box M, Al-Salameen M, Filipescu S (2002) Late glacial to Holocene benthic foraminifera in the Marmara Sea. Mar Geol 190:165–202CrossRefGoogle Scholar
  32. Kurtuluş C, Canbay M (2007) Tracing the middle strand of the North Anatolian Fault Zone through the southern Sea of Marmara based on seismic reflection studies. Geo-Mar Lett 27(1):27–40CrossRefGoogle Scholar
  33. Kuşçu İ, Okamura M, Matsuoka H, Yamamori K, Awata Y, Özalp S (2009) Recognition of active faults and stepover geometry in Gemlik Bay, Sea of Marmara, NW Turkey. Mar Geol 260:90–101CrossRefGoogle Scholar
  34. Kuzucuoğlu C, Dorfler W, Kunesch S, Goupille F (2011) Mid- to late-Holocene climate change in central Turkey: the Tecer Lake record. The Holocene 21:173–188CrossRefGoogle Scholar
  35. Kwiecien O, Arz HW, Lamy F, Wulf S, Bahr A, Rohl U, Haug GH (2008) Estimated reservoir ages of the Black Sea since the last glacial. Radiocarbon 50(1):99CrossRefGoogle Scholar
  36. Lambeck K, Sivan D, Purcell A (2007) Timing of the last Mediterranean Sea - Black Sea connection from isostatic models and regional sea-level data. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea Flood question. Springer, Dordrecht, pp 797–808Google Scholar
  37. Le Pichon X, Şengör AMC, Demirbağ E, Rangin C, Imren C, Armijo R, Görür N, Çağatay MN, de Lepinay BM, Meyer B, Saatçılar R, Tok B (2001) The active main Marmara fault: comparative anatomy of a continental transform fault in a marine setting. Earth Planet Sci Lett 192:595–616CrossRefGoogle Scholar
  38. Litt T, Krastel S, Sturm M, Kipfer R, Orcen S, Heumann G, Franz SO, Ulgen UB, Niessen F (2009) ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quat Sci Rev 28:1555–1567CrossRefGoogle Scholar
  39. Major C, Ryan W, Lericolais G, Hajdas I (2002) Constraints on Black Sea outflow to the Sea of Marmara during the last glacial–interglacial transition. Mar Geol 190(1):19–34CrossRefGoogle Scholar
  40. McHugh CMG, Gurung D, Giosan L, Ryan WBF, Mart Y, Sancar Ü, Burckle L, Çağatay MN (2008) The last reconnection of the Marmara Sea (Turkey) to the World Ocean; a paleoceanographic and paleoclimatic perspective. Mar Geol 255:64–82CrossRefGoogle Scholar
  41. McNeill LC, Cotterill CJ, Henstock TJ, Bull JM, Stefatos A, Collier RL, Hicks SE (2005) Active faulting within the offshore western Gulf of Corinth, Greece: implications for models of continental rift deformation. Geology 33(4):241–244CrossRefGoogle Scholar
  42. Miebach A, Niestrath P, Roeser P, Litt T (2016) Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial. Clim Past 12:575–593CrossRefGoogle Scholar
  43. Mudie PJ, Rochon A, Aksu AE (2002) Pollen stratigraphy of Late Quaternary cores from Marmara Sea: land–sea correlation and paleoclimatic history. Mar Geol 190(1):233–260CrossRefGoogle Scholar
  44. Myers PG, Wielki C, Goldstein SB, Rohling EJ (2003) Hydraulic calculations of postglacial connections between the Mediterranean and the Black Sea. Mar Geol 201(4):253–267CrossRefGoogle Scholar
  45. Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1872–1885CrossRefGoogle Scholar
  46. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen ML, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Rothlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res Atmos 111:1–16CrossRefGoogle Scholar
  47. Reichel T, Halbach P (2007) An authigenic calcite layer in the sediments of the Sea of Marmara—a geochemical marker horizon with paleoaceanographic significance. Deep Sea Res 2 Top Stud Oceanogr 54(11):1201–1215CrossRefGoogle Scholar
  48. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  49. Richter TO, Van der Gaast S, Koster B, Vaars A, Gieles R, de Stigter HC, van Weering TC (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. Geol Soc Lond Spec Publ 267(1):39–50CrossRefGoogle Scholar
  50. Roeser PA, Franz SO, Litt T, Ülgen UB, Hilgers A, Wulf S, Wennrich V, Akçer SÖ, Viehberg FA, Çağatay MN, Melles M (2012) Lithostratigraphic and geochronological framework for the paleoenvironmental reconstruction of the last 36 ka cal BP from a sediment record from Lake Iznik (NW Turkey). Quat Int 274:73–87CrossRefGoogle Scholar
  51. Ryan WBF (2007) Status of the Black Sea flood hypothesis. In: Yanko-Hombach V, Gilbert AS, Dolukhanov PM (eds) The Black Sea Flood question. Springer, Dordrecht, pp 63–88Google Scholar
  52. Ryan WB, Major CO, Lericolais G, Goldstein SL (2003) Catastrophic flooding of the Black Sea. Annu Rev Earth Planet Sci 31(1):525–554CrossRefGoogle Scholar
  53. Sakınç M (2008) Benthic Foraminifera of Sea of Marmara: systematics and autoecology. ITU Publ, IstanbulGoogle Scholar
  54. Sorokin VM (2008) Correlation of upper Quaternary deposits and paleogeography of the Black and Caspian seas. Stratigr Geol Corr 19:563–578CrossRefGoogle Scholar
  55. Soulet G, Ménot G, Lericolais G, Bard E (2011) A revised calendar age for the last reconnection of the Black Sea to the global ocean. Quat Sci Rev 30(9):1019–1026CrossRefGoogle Scholar
  56. Svitoch AA (2007) About the nature of the Khvalynian transgression of the Caspian Sea. Oceanology 47(2):304–311CrossRefGoogle Scholar
  57. Taviani M, Angeletti L, Çağatay MN, Gasperini L, Polonia A, Wesselingh F (2014) Sedimentary and faunal signatures of the post-glacial marine drowning of the Pontocaspian Gemlik “lake” (Sea of Marmara). Quat Int 345:11–17CrossRefGoogle Scholar
  58. Tolun L, Çağatay MN, Carrigan WJ (2002) Organic geochemistry and origin of Late Glacial–Holocene sapropelic layers and associated sediments in Marmara Sea. Mar Geol 190(1):47–60CrossRefGoogle Scholar
  59. Ünlü S, Alpar B (2006) Distribution and sources of hydrocarbons in surface sediments of Gemlik Bay (Marmara Sea, Turkey). Chemosphere 64(5):764–777CrossRefGoogle Scholar
  60. Vardar D, Öztürk K, Yaltırak C, Alpar B (2014) Late Pleistocene–Holocene evolution of the southern Marmara shelf and sub-basins: middle strand of the North Anatolian fault, southern Marmara Sea, Turkey. Mar Geophys Res 35(1):69–85CrossRefGoogle Scholar
  61. Vidal L, Ménot G, Joly C, Bruneton H, Rostek F, Çağatay MN, Bard E (2010) Hydrology in the Sea of Marmara during the last 23 ka: implications for timing of Black Sea connections and sapropel deposition. Paleoceanography 25(1), PA1205. doi: 10.1029/2009PA001735 CrossRefGoogle Scholar
  62. Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27:649–659CrossRefGoogle Scholar
  63. Wegwerth A, Kaiser J, Dellwig O, Shumilovskikh LS, Nowaczyk NR, Arz HW (2016) Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea “Lake”. Quat Sci Rev 135:41–53CrossRefGoogle Scholar
  64. Yaltırak C, Alpar B (2002) Evolution of the middle strand of North Anatolian Fault and shallow seismic investigation of the southeastern Marmara Sea (Gemlik Bay). Mar Geol 190(1):307–327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Betül Filikci
    • 1
  • Kürşad Kadir Eriş
    • 1
  • Namık Çağatay
    • 1
  • Asen Sabuncu
    • 1
  • Alina Polonia
    • 2
  1. 1.Eastern Mediterranean Centre for Oceanography and LimnologyIstanbul Technical UniversityIstanbulTurkey
  2. 2.Istituto di Scienze Marine, CNRU.O.S. BolognaBolognaItaly

Personalised recommendations