Advertisement

Geo-Marine Letters

, Volume 37, Issue 3, pp 305–318 | Cite as

Impact of Lanice conchilega on seafloor microtopography off the island of Sylt (German Bight, SE North Sea)

  • M. SchönkeEmail author
  • P. Feldens
  • D. Wilken
  • S. Papenmeier
  • C. Heinrich
  • J. Schneider von Deimling
  • P. Held
  • S. Krastel
Original

Abstract

This study presents a new in situ method to explore the impact of macrofauna on seafloor microtopography and corresponding microroughness based on underwater laser line scanning. The local microtopography was determined with mm-level accuracy at three stations colonised by the tubeworm Lanice conchilega offshore of the island of Sylt in the German Bight (south-eastern North Sea), covering approximately 0.5 m2 each. Ground truthing was done using underwater video data. Two stations were populated by tubeworm colonies of different population densities, and one station had a hydrodynamically rippled seafloor. Tubeworms caused an increased skewness of the microtopography height distribution and an increased root mean square roughness at short spatial wavelengths compared with hydrodynamic bedforms. Spectral analysis of the 2D Fourier transformed microtopography showed that the roughness magnitude increased at spatial wavelengths between 0.020 and 0.003 m independently of the tubeworm density. This effect was not detected by commonly used 1D roughness profiles but required consideration of the complete spectrum. Overall, the results reveal that new indicator variables for benthic organisms may be developed based on microtopographic data. An example demonstrates the use of local slope and skewness to detect tubeworms in the measured digital elevation model.

Keywords

German Bight Worm Tube Underwater Video Spatial Wavelength Elevation Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This project was funded by the Cluster of Excellence 80 “The Future Ocean” within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. The helpful comments of one reviewer and the editors are highly appreciated. Special thanks go to Heiko Jähmlich for building the underwater frame and housings, and to the crew of Mya II (AWI) for their assistance during the fieldwork. We thank Thomas Meier and Klaus Schwarzer for valuable comments and Björn Peiler for his assistance with C/C++ programming.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

References

  1. Anderson JT, Van Holliday D, Kloser R, Reid DG, Simard Y (2008) Acoustic seabed classification: current practice and future directions. ICES J Mar Sci 65:1004–1011. doi: 10.1093/icesjms/fsn061 CrossRefGoogle Scholar
  2. Armonies W (2000) On the spatial scale needed for benthos community monitoring in the coastal North Sea. J Sea Res 43:121–133. doi: 10.1016/S1385-1101(00)00008-3 CrossRefGoogle Scholar
  3. Bartholdy J, Ernstsen VB, Flemming BW, Winter C, Bartholomä A, Kroon A (2015) On the formation of current ripples. Sci Rep 5:11390. doi: 10.1038/srep11390 CrossRefGoogle Scholar
  4. Bhushan B (2001) Modern tribology handbook. CRC Press, Boca RatonGoogle Scholar
  5. Briggs KB (1989) Microtopographical roughness of shallow-water continental shelves. IEEE J Ocean Eng 14:360–367. doi: 10.1109/48.35986 CrossRefGoogle Scholar
  6. Briggs KB, Williams KL (2002) Characterization of interface roughness of rippled sand off Fort Walton Beach, Florida. IEEE J Ocean Eng 27:505–514. doi: 10.1109/JOE.2002.1040934 CrossRefGoogle Scholar
  7. Briggs KB, Lyons AP, Pouliquen E (2005) Seafloor roughness, sediment grain size, and temporal stability. In: Proc Int Conf Underwater Acoustic Measurements: Technologies & Results, Heraklion, Crete, pp 337–343Google Scholar
  8. Brown CJ, Collier JS (2008) Mapping benthic habitat in regions of gradational substrata: an automated approach utilising geophysical, geological, and biological relationships. Estuar Coast Shelf Sci 78:203–214. doi: 10.1016/j.ecss.2007.11.026 CrossRefGoogle Scholar
  9. Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502–520. doi: 10.1016/j.ecss.2011.02.007 CrossRefGoogle Scholar
  10. Che H-R, Ierodiaconou D, Laurenson L (2012) Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar Coast Shelf Sci 97:1–9. doi: 10.1016/j.ecss.2011.10.004 CrossRefGoogle Scholar
  11. Coggan R, Diesing M (2011) The seabed habitats of the central English Channel: a generation on from Holme and Cabioch, how do their interpretations match-up to modern mapping techniques? Cont Shelf Res 31:132–150. doi: 10.1016/j.csr.2009.12.002 CrossRefGoogle Scholar
  12. Diesing M, Stephens D (2015) A multi-model ensemble approach to seabed mapping. J Sea Res 100:62–69. doi: 10.1016/j.seares.2014.10.013 CrossRefGoogle Scholar
  13. Diesing M, Kubicki A, Winter C, Schwarzer K (2006) Decadal scale stability of sorted bedforms, German Bight, southeastern North Sea. Cont Shelf Res 26:902–916. doi: 10.1016/j.csr.2006.02.009 CrossRefGoogle Scholar
  14. Diesing M, Green SL, Stephens D, Lark RM, Stewart HA, Dove D (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84:107–119. doi: 10.1016/j.csr.2014.05.004 CrossRefGoogle Scholar
  15. Eckman J (1983) Hydrodynamic processes affecting benthic recruitment. Limnol Oceanogr 28:241–257CrossRefGoogle Scholar
  16. European Parliament, European Council (2008) Establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union, vol 164, pp 19–40Google Scholar
  17. Heinrich C, Feldens P, Schwarzer K (2016) Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight). Geo-Mar Lett. doi: 10.1007/s00367-016-0477-z Google Scholar
  18. Jackson D, Richardson M (2007) High-frequency seafloor acoustics. Springer, Heidelberg. doi: 10.1007/978-0387-36945-7
  19. Jackson DR, Richardson MD, Williams KL, Lyons AP, Jones CD, Briggs KB, Tang D (2009) Acoustic observation of the time dependence of the roughness of sandy seafloors. IEEE J Ocean Eng 34:407–422CrossRefGoogle Scholar
  20. Kulkarni KG, Panchang R (2015) New insights into polychaete traces and fecal pellets: another complex ichnotaxon? PLoS ONE 10:e0139933. doi: 10.1371/journal.pone.0139933 CrossRefGoogle Scholar
  21. Lefebvre A, Ernstsen VB, Winter C (2011) Bedform characterization through 2D spectral analysis. J Coast Res 64:781–785Google Scholar
  22. Lefebvre A, Ernstsen VB, Winter C (2013) Estimation of roughness lengths and flow separation over compound bedforms in a natural-tidal inlet. Cont Shelf Res 61–62:1–14. doi: 10.1016/j.csr.2013.04.030 Google Scholar
  23. Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 49:764–766. doi: 10.1016/j.jesp.2013.03.013 CrossRefGoogle Scholar
  24. Lyons AP, Fox WLJ, Hasiotis T, Pouliquen E (2002) Characterization of the two-dimensional roughness of wave-rippled sea floors using digital photogrammetry. IEEE J Ocean Eng 27:515–524. doi: 10.1109/JOE.2002.1040935 CrossRefGoogle Scholar
  25. Maki T, Kume A, Ura T (2011) Volumetric mapping of tubeworm colonies in Kagoshima Bay through autonomous robotic surveys. Deep Sea Res I Oceanogr Res Pap 58:757–767. doi: 10.1016/j.dsr.2011.05.006 CrossRefGoogle Scholar
  26. Markert E, Holler P, Kröncke I, Bartholomä A (2013) Benthic habitat mapping of sorted bedforms using hydroacoustic and ground-truthing methods in a coastal area of the German Bight/North Sea. Estuar Coast Shelf Sci 129:94–104. doi: 10.1016/j.ecss.2013.05.027 CrossRefGoogle Scholar
  27. McCall P, Tevesz ML (1982) Animal-sediment relations: the biogenic alteration of sediments. Topics in Geobiology, vol 100. Springer, HeidelbergGoogle Scholar
  28. Mielck F, Holler P, Bürk D, Hass HC (2015) Interannual variability of sorted bedforms in the coastal German Bight (SE North Sea). Cont Shelf Res 111(A):31–41. doi: 10.1016/j.csr.2015.10.016 CrossRefGoogle Scholar
  29. Miller RL, Byrne RJ (1966) The angle of repose for a single grain on a fixed rough bed. Sedimentology 6:303–314. doi: 10.1111/j.1365-3091.1966.tb01897.x CrossRefGoogle Scholar
  30. Moore KD, Jaffe JS (2002) Time-evolution of high-resolution topographic measurements of the seafloor using a 3-D laser line scan mapping system. IEEE J Ocean Eng 27:525–545. doi: 10.1109/JOE.2002.806304
  31. Murray AB, Thieler ER (2004) A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and rippled scour depressions. Cont Shelf Res 24:295–315. doi: 10.1016/j.csr.2003.11.001 CrossRefGoogle Scholar
  32. Nowell ARM, Jumars PA, Eckman JE (1981) Effects of biological activity on the entrainment of marine sediments. Mar Geol 42:133–153CrossRefGoogle Scholar
  33. Pouliquen E, Lyons AP (2002) Backscattering from bioturbated sediments at very high frequency. IEEE J Ocean Eng 27:388–402. doi: 10.1109/JOE.2002.1040926 CrossRefGoogle Scholar
  34. Rattray A, Ierodiaconou D, Laurenson L, Burq S, Reston M (2009) Hydro-acoustic remote sensing of benthic biological communities on the shallow South East Australian continental shelf. Estuar Coast Shelf Sci 84(2):237–245CrossRefGoogle Scholar
  35. Saba GK, Steinberg DK (2012) Abundance, composition, and sinking rates of fish fecal pellets in the Santa Barbara Channel. Sci Rep 2:716. doi: 10.1038/srep00716 CrossRefGoogle Scholar
  36. Soulsby RL, Whitehouse RJS, Marten KV (2012) Prediction of time-evolving sand ripples in shelf seas. Cont Shelf Res 38:47–62. doi: 10.1016/j.csr.2012.02.016 CrossRefGoogle Scholar
  37. Taghon GL, Nowell ARM, Jumars PA (1984) Transport and breakdown of fecal pellets: biological and sedimentological consequences. Limnol Oceanogr 29:64–72. doi: 10.4319/lo.1984.29.1.0064 CrossRefGoogle Scholar
  38. Tanner WF (1967) Ripple mark indices and their uses. Sedimentology 9:89–104. doi: 10.1111/j.1365-3091.1967.tb01332.x CrossRefGoogle Scholar
  39. Thomson RE, Emery WJ (2014) Data analysis methods in physical oceanography, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  40. Tillmann T, Wunderlich J (2011) Facies and development of a Holocene barrier spit (southern Sylt/German North Sea). In: 6th Int Workshop Advanced Ground Penetrating Radar (IWAGPR), pp 1–7. doi: 10.1109/IWAGPR.2011.5963874
  41. Wang C-C, Tang D (2012) Application of underwater laser scanning for seafloor shell fragments characterization. J Mar Sci Technol 20:95–102. http://jmst.ntou.edu.tw/marine/20-1/95-102.pdf
  42. Wiberg PL, Harris CK (1994) Ripple geometry in wave-dominated environments. J Geophys Res 99:775–789. doi: 10.1029/93JC02726
  43. Wilken D, Feldens P, Wunderlich T, Heinrich C (2012) Application of 2D Fourier filtering for elimination of stripe noise in side-scan sonar mosaics. Geo-Mar Lett 32:337–347. doi: 10.1007/s00367-012-0293-z CrossRefGoogle Scholar
  44. Zeiler M, Schulz-Ohlberg J, Figge K (2000) Mobile sand deposits and shoreface sediment dynamics in the inner German Bight (North Sea). Mar Geol 170:363–380. doi: 10.1016/S0025-3227(00)00089-X CrossRefGoogle Scholar
  45. Ziegelmeir E (1952) Beobachtungen über den Röhrenbau von Lanice conchilega (Pallas) im Experiment und am natürlichen Standort. Helgolander Meeresun 4:107–129. doi: 10.1007/BF02178540 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Schönke
    • 1
    • 2
    Email author
  • P. Feldens
    • 1
    • 2
  • D. Wilken
    • 2
  • S. Papenmeier
    • 3
  • C. Heinrich
    • 4
  • J. Schneider von Deimling
    • 2
  • P. Held
    • 2
  • S. Krastel
    • 2
  1. 1.Leibniz Institute for Baltic Sea Research WarnemündeWarnemündeGermany
  2. 2.Institute of GeosciencesKiel UniversityKielGermany
  3. 3.Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteList auf SyltGermany
  4. 4.Landesamt für Landwirtschaft, Umwelt und ländliche Räume, des Landes Schleswig-HolsteinFlintbekGermany

Personalised recommendations