Advertisement

Geo-Marine Letters

, Volume 37, Issue 3, pp 273–288 | Cite as

Holocene stratigraphy of the Ångermanälven River estuary, Bothnian Sea

  • O. Hyttinen
  • A. T. Kotilainen
  • J. J. Virtasalo
  • P. Kekäläinen
  • I. Snowball
  • S. Obrochta
  • T. Andrén
Original

Abstract

This study explores the Holocene depositional succession at the IODP Expedition 347 sites M0061 and M0062 in the vicinity of the Ångermanälven River estuary in the Bothnian Sea sector of the Baltic Sea in northern Scandinavia. Site M0061 is located in a coastal offshore setting (87.9 m water depth), whereas site M0062 is fully estuarine (69.3 m water depth). The dataset comprises acoustic profiles and sediment cores collected in 2007 and late 2013 respectively. Three acoustic units (AUs) were recognized. Lowermost AU1 is interpreted as a poorly to discontinuous stratified glaciofluvial deposit, AU2 as a stratified conformable drape of glaciolacustrine origin, and AU3 as a poorly stratified to stratified mud drift. A strong truncating reflector separates AU2 and AU3. Three lithological units (LUs) were defined in the sediment cores. LU1 consists of glaciofluvial sand and silt gradating into LU2, which consists of glaciolacustrine varves. A sharp contact interpreted as a major unconformity separates LU2 from the overlying LU3 (brackish-water mud). In the basal part of LU3, one debrite (site M0061) or two debrites (site M0062) were recognized. Information yielded from sediment physical properties (magnetic susceptibility, natural gamma ray, dry bulk density), geochemistry (total carbon, total organic carbon, total inorganic carbon and nitrogen), and grain size support the LU division. The depositional succession was formally subdivided into two alloformations: the Utansjö Alloformation and overlying Hemsön Alloformation; the Utansjö Alloformation was further subdivided into two lithostratigraphic formations: the Storfjärden and Åbordsön formations. The Storfjärden (sandy outwash) and Åbordsön (glaciolacustrine rhythmite) formations represent a glacial retreat systems tract, which started at ca. 10.6 kyr BP. Their deposition was mainly controlled by meltwater from the retreating ice margin, glacio-isostatic land uplift and the regressive (glacial) lake level. The Hemsön Alloformation (organic-rich brackish-water mud) represents a period of forced regression, starting possibly at ca. 9.5 kyr BP. At about 7 kyr BP, brackish water reached the study area as a result of the mid-Holocene marine flooding of the Baltic Sea Basin, but the rapid land uplift soon surpassed the associated (Littorina) transgression. Changed near-bottom current patterns, caused by the establishment of a permanent halocline, and the reduced sediment consistency caused by increased organic deposition resulted in a sharp and erosional base of the brackish-water mud. Estuarine processes and salinity stratification at site M0062 started to play a more important role. This study applies a combined allostratigraphic and lithostratigraphic approach over the conventional Baltic Sea stages. This approach makes it more straightforward to study this Baltic Sea deglaciation–postglacial sequence and compare it to other formerly glaciated shallow sea estuaries.

Keywords

Last Glacial Maximum Lithological Unit Land Uplift Varve Thickness Open Access Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research used samples and data provided by the Integrated Ocean Drilling Program (IODP), and the authors wish to thank the IODP Expedition 347 scientific party and the Bremen Core Repository for fruitful cooperation. O.H. and A.K. acknowledge Academy of Finland funding for the CISU project (decision number 281143). Constructive comments from the reviewers P. Gibbard and M. Johnson as well as the editors helped greatly to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2016_490_MOESM1_ESM.pdf (2.2 mb)
ESM 1 (PDF 2297 kb)

References

  1. Alexanderson H, Johnsen T, Murray AS (2010) Re-dating the Pilgrimstad Interstadial with OSL: a warmer climate and a smaller ice sheet during the Swedish Middle Weichselian. Boreas 39:367–376CrossRefGoogle Scholar
  2. Andrén E, Andrén T, Sohlenius G (2000) The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29:233–250CrossRefGoogle Scholar
  3. Andrén T, Lindeberg G, Andrén E (2002) Evidence of the final drainage of the Baltic Ice Lake and the brackish phase of the Yoldia Sea in glacial varves from the Baltic Sea. Boreas 31:226–238CrossRefGoogle Scholar
  4. Andrén T, Björck S, Andrén E, Conley D, Zillén L, Anjar J (2011) The development of the Baltic Sea Basin during the last 130 ka. In: Harff J et al (eds) The Baltic Sea Basin, Central and Eastern European Development Studies (CEEDES). doi: 10.1007/978-3-642-17220-5_4
  5. Andrén T, Jørgensen BB, Cotterill C, Green S, Expedition 347 Scientists (2014) Baltic Sea Basin Paleoenvironment: paleoenvironmental evolution of the Baltic Sea Basin through the last glacial cycle. IODP Prel Rep 347. doi: 10.2204/iodp.pr.347.2014
  6. Andrén T, Jørgensen BB, Cotterill C, Green S, Expedition 347 Scientists (2015) Baltic Sea paleoenvironment. Proc IODP, Integrated Ocean Drilling Program, vol 347. doi: 10.2204/iodp.proc.347.2015
  7. Apler A, Nyberg J, Jönsson K, Hedlund K, Heinemo S-Å, Kjellin B (2014) Project Fiberbank: mapping of sediment rich in pulp fiber along the western Norrland coast (in Swedish). Geological Survey of Sweden, Uppsala, SGU Report 2014/16Google Scholar
  8. Arnborg L (1958) Lower Ångermanälven River (in Swedish). Publications from the Geographical Institute. University of Uppsala, UppsalaGoogle Scholar
  9. Arnborg L (1959) Lower Ångermanälven River 2 (in Swedish). Publications from the Geographical Institute. University of Uppsala, UppsalaGoogle Scholar
  10. Bendixen C, Jensen JB, Boldreel LO, Clausen OR, Bennike O, Seidenkrantz M-S, Nyberg J, Hubscher C (2016) The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and Early Littorina Sea transgression. Boreas. doi: 10.1111/bor.12154 Google Scholar
  11. Bennike O, Jensen JB, Lemke W, Kuijpers A, Lomholt S (2004) Late- and postglacial history of the Great Belt, Denmark. Boreas 33:18–33CrossRefGoogle Scholar
  12. Berglund M (2004) Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift centre. Boreas 33:48–60CrossRefGoogle Scholar
  13. Berglund M (2012) The highest postglacial shore levels and glacio-isostatic uplift pattern in northern Sweden. Geogr Ann Ser A Phys Geogr 94:321–337CrossRefGoogle Scholar
  14. Berglund BE, Sandgren P, Barnekow L, Hannon G, Jiang H, Skog G, Yu SY (2005) Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat Int 130:111–139CrossRefGoogle Scholar
  15. Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quat Int 27:19–40CrossRefGoogle Scholar
  16. Brookfield ME, Martini IP (1999) Facies architecture and sequence stratigraphy in glacially influenced basins: basic problems and water-level/glacier input-point controls (with an example from the Quaternary of Ontario, Canada). Sediment Geol 123:183–197CrossRefGoogle Scholar
  17. Cato I (1985) The definitive connection of the Swedish geochronological time scale with the present, and the new date of the zero year in Döviken, northern Sweden. Boreas 14:117–122CrossRefGoogle Scholar
  18. Cato I (1987) On the definitive connection of the Swedish Time Scale with the present. Sveriges Geol Unders Ca 68, 55 ppGoogle Scholar
  19. Cuzzone JK, Clark PU, Carlson AE, Ullman DJ, Rinterknecht VR, Milne GA, Lunkka J-P, Wohlfarth B, Marcott SA, Caffee M (2016) Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget. Earth Planet Sci Lett 448:34–41CrossRefGoogle Scholar
  20. Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146CrossRefGoogle Scholar
  21. Dalrymple RW, Boyd R, Zaitlin BA (eds) (1994) Incised valley systems: origin and sedimentary sequences. SEPM Spec Publ 51, Tulsa, OKGoogle Scholar
  22. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nov. 8:158–165Google Scholar
  23. Expedition 347 Scientists (2014a) Visual core description and core images IODP Hole 347-M0062A. doi: 10.1594/PANGAEA.837853
  24. Expedition 347 Scientists (2014b) Visual core description and core images IODP Hole 347-M0062B. doi: 10.1594/PANGAEA.837854
  25. Expedition 347 Scientists (2014c) Visual core description and core images IODP Hole 347-M0062C. doi: 10.1594/PANGAEA.837855
  26. Expedition 347 Scientists (2014d) Visual core description and core images IODP Hole 347-M0062D. doi: 10.1594/PANGAEA.837856
  27. Expedition 347 Scientists (2014e) Visual core description and core images IODP Hole 347-M0061A. doi: 10.1594/PANGAEA.837850
  28. Expedition 347 Scientists (2014f) Visual core description and core images IODP Hole 347-M0061B. doi: 10.1594/PANGAEA.837851
  29. Expedition 347 Scientists (2014g) Visual core description and core images IODP Hole 347-M0061C. doi: 10.1594/PANGAEA.837852
  30. Fairbridge RW (1980) The estuary: its definition and geodynamic cycle. In: Olausson E, Cato I (eds) Chemistry and biogeochemistry of estuaries. Wiley, New York, pp 1–36Google Scholar
  31. Gibbard PL (1977) Fossil tracks from varved sediments near Lammi, South Finland. Bull Geol Soc Finl 49:53–57Google Scholar
  32. Häusler K, Moros M, Wacker L, Hammerschmidt L, Dellwig O, Leipe T, Kotilainen A, Arz H (2016) Mid- to late Holocene environmental separation of the northern and central Baltic Sea basins in response to differential land uplift. Boreas. doi: 10.1111/bor.12198 Google Scholar
  33. Helmens KF, Johansson PW, Räsänen ME, Alexanderson H, Eskola KO (2007) Ice-free intervals at Sokli continuing into marine isotope stage 3 at Sokli in the central area of the Fennoscandian glaciations. Bull Geol Soc Finl 79:17–39Google Scholar
  34. Houmark-Nielsen M (2003) Signature and timing of the Kattegat Ice Stream: onset of the last glacial maximum sequence at the southwestern margin of the Scandinavian ice sheet. Boreas 32:227–241CrossRefGoogle Scholar
  35. Houmark-Nielsen M, Kjær KH (2003) Southwest Scandinavia, 40–15 ka BP: palaeogeography and environmental change. J Quat Sci 18:769–786CrossRefGoogle Scholar
  36. IODP Scientific Prospectus 347 (2016) IODP Scientific Prospectus 347. doi: 10.2204/iodp.sp.347.2012. Accessed 01.06.2016
  37. Jensen JB, Bennike O, Lemke W, Kuijpers A (2005) The Storebælt gateway to the Baltic. Bull Geol Soc Den 7:45–48Google Scholar
  38. Jokinen SA, Virtasalo JJ, Kotilainen AT, Saarinen T (2015) Varve microfabric record of seasonal sedimentation and bottom flow-modulated mud deposition in the coastal northern Baltic Sea. Mar Geol 366:79–96CrossRefGoogle Scholar
  39. Kennish MJ (ed) (2016) Encyclopedia of estuaries. Springer, BerlinGoogle Scholar
  40. Kotilainen AT, Hutri KL (2004) Submarine Holocene sedimentary disturbances in the Olkiluoto area of the Gulf of Bothnia, Baltic Sea: a case of postglacial palaeoseismicity. Quat Sci Rev 23:1125–1135CrossRefGoogle Scholar
  41. Kotilainen AT, Hämäläinen J, Winterhalter B (2002) Reconstructing a continuous holocene composite sedimentary record for the eastern Gotland Deep, Baltic Sea. Boreal Environ Res 7:1–12Google Scholar
  42. Larsen NK, Knudsen KL, Krohn CF, Kronborg C, Murray AS, Nielsen OB (2009) Late Quaternary ice sheet, lake and sea history of southwest Scandinavia – a synthesis. Boreas 38:732–761CrossRefGoogle Scholar
  43. Lidén R (1913) Geochronological studies on the Fini-glacial stage in Ångermanland (in Swedish). Sver Geol Unders Ca 9:1–39Google Scholar
  44. Lidén R (1938) The course and chronology of the late quaternary shore displacement in Ångermanland (in Swedish). Geol Fören Stockh Förh 60:397–404CrossRefGoogle Scholar
  45. Lindén M, Möller P, Björck S, Sandgren P (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:1–22CrossRefGoogle Scholar
  46. Lundqvist J, Wohlfarth B (2001) Timing and east-west correlation of south Swedish ice marginal lines during the Late Weichselian. Quat Sci Rev 20:1127–1148CrossRefGoogle Scholar
  47. Lunkka JP, Saarnisto M, Gey V, Demidov I, Kiselova V (2001) The extent and age of the Last Glacial Maximum in the south-eastern sector of the Scandinavian ice sheet. Glob Planet Chang 31:407–442CrossRefGoogle Scholar
  48. Lunkka JP, Murray A, Korpela K (2008) Weichselian sediment succession at Ruunaa, Finland, indicating a Mid-Weichselian ice-free interval in eastern Fennoscandia. Boreas 37:234–244CrossRefGoogle Scholar
  49. Mangerud J, Jansen E, Landvik J (1996) Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Glob Planet Chang 12:11–26CrossRefGoogle Scholar
  50. Möller P, Murray AS (2016) Drumlinised glaciofluvial and glaciolacustrine sediments on the Småland peneplain, South Sweden – new information on the growth and decay history of the Fennoscandian Ice Sheets during MIS 3. Quat Sci Rev 122:1–29. doi: 10.1016/j.quascirev.2015.04.025 CrossRefGoogle Scholar
  51. Möller P, Anjar J, Murray AS (2013) An OSL-dated sediment sequence at Idre, west-central Sweden, indicating ice-free conditions in MIS 3. Boreas 42:25–42CrossRefGoogle Scholar
  52. NACSN (2005) North American stratigraphic code. North American Commission on Stratigraphic Nomenclature. AAPG Bull 89:1547–1591CrossRefGoogle Scholar
  53. Obrochta SP, Crowley TJ, Channell JET, Hodell DA, Baker PA, Seki A, Yokoyama Y (2014) Climate variability and ice-sheet dynamics during the last three glaciations. Earth Planet Sci Lett 406:198–212. doi: 10.1016/j.epsl.2014.09.004 CrossRefGoogle Scholar
  54. Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow marine to marginal marine systems: Ben Nevis & Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, St. John’s, NFLD, GAC Short Course 15Google Scholar
  55. Perillo G (ed) (1995) Geomorphology and sedimentology of estuaries, 1st edn. Developments in Sedimentology, vol 53. Elsevier, AmsterdamGoogle Scholar
  56. Powell RD, Cooper JM (2002) A glacial sequence stratigraphic model for temperate, glaciated continental shelves. In: Dowdeswell JA, Ó Cofaigh C (eds) Glacier-influenced sedimentation on high-latitude continental margins. Geol Soc Lond Spec Publ 203:215–244Google Scholar
  57. Räsänen ME, Auri JM, Huitti JV, Klap AK, Virtasalo JJ (2009) A shift from lithostratigraphic to allostratigraphic classification of Quaternary glacial deposits. GSA Today 19(2):4–11CrossRefGoogle Scholar
  58. Räsänen ME, Huitti JV, Bhattaraia S, Harvey J, Huttunen S (2015) The SE sector of the Middle Weichselian Eurasian ice sheet was much smaller than assumed. Quat Sci Rev 122:131–141CrossRefGoogle Scholar
  59. Reinholdsson M, Snowball I, Zillén L, Lenz C, Conley DJ (2013) Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet Sci Lett 366:137–150CrossRefGoogle Scholar
  60. Rößler D, Moros M, Lemke W (2011) The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40:231–241CrossRefGoogle Scholar
  61. Salonen VP, Kaakinen A, Kultti S, Miettinen A, Eskola KO, Lunkka JP (2007) Middle Weichselian glacial event in the central part of the Scandinavian ice sheet recorded in the Hitura pit, Ostrobothnia, Finland. Boreas 37:38–54CrossRefGoogle Scholar
  62. Sander M, Bengtsson L, Holmquist B, Wohlfarth B, Cato I (2002) The relationship between annual varve thickness and maximum annual discharge (1909–1971). J Hydrol 263:23–35CrossRefGoogle Scholar
  63. SGU (2016) Swedish Geological Survey (SGU) database. http://apps.sgu.se/kartgenerator/maporder_en.html. Accessed 20.06.2016
  64. SMHI (2016) Swedish Meteorological and Hydrological Institute (SMHI) database. http://opendata-catalog.smhi.se/explore/. Accessed 20.06.2016
  65. Sohlenius G, Emeis KC, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the fresh–brackish water transition in the Baltic Sea. Mar Geol 177:221–242CrossRefGoogle Scholar
  66. Tuovinen N, Virtasalo JJ, Kotilainen A (2008) Holocene diatom stratigraphy in the Archipelago Sea, northern Baltic Sea. J Paleolimnol 40:793–807CrossRefGoogle Scholar
  67. Uchman A, Kumpulainen RA (2011) Trace fossils in quaternary glacial varved clays near Uppsala, Sweden. GFF 133:135–140CrossRefGoogle Scholar
  68. Ukkonen P, Lunkka J, Jungner H, Donner J (1999) New radiocarbon dates from Finnish mammoths indicating large ice-free areas in Fennoscandia during the Middle Weichselian. J Quat Sci 14(7):711–714CrossRefGoogle Scholar
  69. Väliranta M, Salonen JS, Heikkilä M, Amon L, Helmens K, Klimaschewski A, Kuhry P, Kultti S, Poska A, Shala S, Veski S, Birks HH (2015) Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat Commun 6:6809. doi: 10.1038/ncomms7809
  70. Virtasalo JJ, Kotilainen AT, Räsänen ME (2005) Holocene stratigraphy of the Archipelago Sea, northern Baltic Sea: the definitions and descriptions of the Dragsfjärd, Korppoo and Nauvo Alloformations. Baltica 18:83–97Google Scholar
  71. Virtasalo JJ, Kotilainen AT, Räsänen ME, Ojala AEK (2007) Late-glacial and postglacial deposition in a large, low relief, epicontinental basin: the northern Baltic Sea. Sedimentology 54:1323–1344CrossRefGoogle Scholar
  72. Virtasalo JJ, Löwemark L, Papunen H, Kotilainen AT, Whitehouse MJ (2010) Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea. J Geol Soc Lond 167:1185–1198CrossRefGoogle Scholar
  73. Virtasalo JJ, Ryabchuk D, Kotilainen A, Zhamoida V, Grigoriev A, Sivkov V, Dorokhova E (2014a) Middle Holocene to present sedimentary environment in the easternmost Gulf of Finland (Baltic Sea) and the birth of the Neva River. Mar Geol 350:84–96CrossRefGoogle Scholar
  74. Virtasalo JJ, Hämäläinen J, Kotilainen AT (2014b) Toward a standard stratigraphical classification practice for the Baltic Sea sediments: the CUAL approach. Boreas 43:924–938. doi: 10.1111/bor.12076 CrossRefGoogle Scholar
  75. Virtasalo JJ, Endler M, Moros M, Jokinen SA, Hämäläinen J, Kotilainen AT (2016) Base of brackish-water mud as key regional stratigraphic marker of mid-Holocene marine flooding of the Baltic Sea Basin. Geo-Mar Lett 36:445–456. doi: 10.1007/s00367-016-0464-4 CrossRefGoogle Scholar
  76. Widerlund A, Andersson PS (2006) Strontium isotopic composition of modern and Holocene mollusc shells as a palaeosalinity indicator for the Baltic Sea. Chem Geol 232:54–66CrossRefGoogle Scholar
  77. Widerlund A, Andersson PS (2011) Late Holocene freshening of the Baltic Sea derived from high-resolution strontium isotope analyses of mollusk shells. Geology 39:187–190CrossRefGoogle Scholar
  78. Wohlfarth B, Björck S, Cato I, Possnert G (1997) A new middle Holocene varve diagram from river Ångermanälven, Northern Sweden: indications for a possible error in the Holocene varve chronology. Boreas 4:347–354Google Scholar
  79. Wohlfarth B, Holmquist B, Cato I, Lindersson H (1998) The climatic significance of the clastic varves in Ångermanälven River Estuary, northern Sweden, AD 1860 to 1950. The Holocene 8:521–534CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • O. Hyttinen
    • 1
  • A. T. Kotilainen
    • 2
  • J. J. Virtasalo
    • 2
  • P. Kekäläinen
    • 1
    • 3
  • I. Snowball
    • 4
  • S. Obrochta
    • 5
  • T. Andrén
    • 6
  1. 1.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  2. 2.Marine GeologyGeological Survey of Finland (GTK)EspooFinland
  3. 3.WSP Finland OyHelsinkiFinland
  4. 4.Department of Earth Sciences - Natural Resources and Sustainable DevelopmentUppsala UniversityUppsalaSweden
  5. 5.Faculty of International Resource ScienceAkita UniversityAkita CityJapan
  6. 6.School of Natural Sciences, Technology and Environmental StudiesSödertörn UniversityHuddingeSweden

Personalised recommendations