Geo-Marine Letters

, Volume 37, Issue 3, pp 207–213 | Cite as

Oceanic circulation changes during early Pliocene marine ice-sheet instability in Wilkes Land, East Antarctica

  • Melissa A. Hansen
  • Sandra Passchier


In the Southern Ocean, unconstrained Westerlies allow for intense mixing between deep waters and the atmosphere. How this system interacts with Antarctic ice sheets and the global ocean circulation is poorly understood due to a paucity of data. The poor abundance and preservation of foraminiferal carbonate in ice-proximal sediments is a major challenge in high-latitude paleoceanography. A new approach is to examine a sediment geochemical record of changing paleoproductivity and sediment redox environment that can be tied to changes in water mass properties. This study focuses on the paleoceanography of the George V Land margin between ~4.7 and 4.3 Ma. This interval at the onset of the early Pliocene Climatic Optimum was characterized by the highest global sea surface temperatures and the lowest sea ice concentrations in East Antarctica in the past 5 million years. At IODP Site U1359, an abrupt increase in Mn/Al ratios ~4.6 Ma indicates an episode of oxic bottom conditions resulting from enhanced wind-driven downwelling of Antarctic surface water. Above, extremely high concentrations of sedimentary barite (Ba excess >40,000 ppm) point to biogenic barite deposition, preservation, and concentration through enhanced upwelling of nutrient-rich Circumpolar Deep Water (CDW). Incursion of CDW onto the continental shelf affected ice discharge and resulted in a stable but reduced ice-sheet configuration over several glacial cycles. The geochemical results along with previous work on Site U1359 for the first time link paleoceanography and cryospheric change based on data from the same high-latitude site.


Pliocene Southern Ocean Barite Circumpolar Deep Water Integrate Ocean Drill Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was supported by the National Science Foundation (award OCE 1060080 to S.P.). Samples were provided by the Integrated Ocean Drilling Program. Insightful comments from anonymous reviewers and the journal editors helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2016_489_MOESM1_ESM.pdf (80 kb)
ESM 1 (PDF 80 kb)


  1. Anderson RF, Winckler G (2005) Problems with paleoproductivity proxies. Paleoceanography 20, PA3012. doi: 10.1029/2004PA001107 Google Scholar
  2. Anderson RF, Ali S, Bradtmiller LI, Nielsen SH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–1448CrossRefGoogle Scholar
  3. Billups K, Ravelo AC, Zachos JC, Norris RD (1999) Link between oceanic heat transport, thermohaline circulation, and the Intertropical Convergence Zone in the early Pliocene Atlantic. Geology 27(4):319–322CrossRefGoogle Scholar
  4. Bohaty SM, Harwood DM (1998) Southern Ocean Pliocene paleotemperature variation from high-resolution silicoflagellate biostratigraphy. Mar Micropaleontol 33:241–272CrossRefGoogle Scholar
  5. Bonn WJ, Gingele FX, Grobe H, Mackensen A, Fütterer DK (1998) Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka. Palaeogeogr Palaeoclimatol Palaeoecol 139(3):195–211CrossRefGoogle Scholar
  6. Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci Rev 35:249–284CrossRefGoogle Scholar
  7. Calvert SE, Pedersen TF (1993) Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88CrossRefGoogle Scholar
  8. Ciesielski PF, Weaver FM (1974) Early Pliocene temperature changes in the Antarctic seas. Geology 2(10):511–515CrossRefGoogle Scholar
  9. Cody RD, Levy RH, Harwood DM, Sadler PM (2008) Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeogr Palaeoclimatol Palaeoecol 260(1):92–121CrossRefGoogle Scholar
  10. Cook CP, van de Flierdt T, Williams T, Hemming SR, Iwai M, Kobayashi M, Jimenez-Espejo FJ, Escutia C, González JJ, Khim BK, McKay RM, Passchier S, Bohaty SM, Riesselman CR, Tauxe L, Sugisaki S, Galindo AL, Patterson MO, Sangiorgi F, Pierce EL, Brinkhuis H, IODP Expedition 318 Scientists (2013) Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geosci 6(9):765–769. doi: 10.1038/ngeo1889 CrossRefGoogle Scholar
  11. DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531(7596):591–597CrossRefGoogle Scholar
  12. Escutia C, Bárcena MA, Lucchi RG, Romero O, Ballegeer AM, Gonzalez JJ, Harwood DM (2009) Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Global Planet Change 69(3):170–184CrossRefGoogle Scholar
  13. Expedition 318 Scientists (2011) Site U1359. Proceedings of the Integrated Ocean Drilling Program, vol 318. College Station, TXGoogle Scholar
  14. Fagel N, Dehairs F, André L, Bareille G, Monnin C (2002) Ba distribution in surface Southern Ocean sediments and export production estimates. Paleoceanography 17(2):1011. doi: 10.1029/2000PA000552 CrossRefGoogle Scholar
  15. Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC (2013) Patterns and mechanisms of early Pliocene warmth. Nature 496(7443):43–49CrossRefGoogle Scholar
  16. Gallego-Torres D, Romero OE, Martínez-Ruiz F, Kim JH, Donner B, Ortega-Huertas M (2014) Rapid bottom-water circulation changes during the last glacial cycle in the coastal low-latitude NE Atlantic. Quat Res 81(2):330–338CrossRefGoogle Scholar
  17. Goodge JW, Fanning CM (2010) Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geol Soc Am Bull 122(7-8):1135–1159CrossRefGoogle Scholar
  18. Hansen MA, Passchier S, Khim BK, Song B, Williams T (2015) Threshold behavior of a marine‐based sector of the East Antarctic Ice Sheet in response to early Pliocene ocean warming. Paleoceanography 30(6):789–801CrossRefGoogle Scholar
  19. Hendy IL (2010) Diagenetic behavior of barite in a coastal upwelling setting. Paleoceanography 25(4), PA4103. doi: 10.1029/2009PA001890 CrossRefGoogle Scholar
  20. Hepp DA, Mörz T, Grützner J (2006) Pliocene glacial cyclicity in a deep-sea sediment drift (Antarctic Peninsula Pacific Margin). Palaeogeogr Palaeoclimatol Palaeoecol 231(1):181–198CrossRefGoogle Scholar
  21. Jakobsson M, Løvlie R, Al-Hanbali H, Arnold E, Backman J, Mörth M (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28(1):23–26CrossRefGoogle Scholar
  22. Latimer JC, Filippelli GM, Hendy IL, Gleason JD, Blum JD (2006) Glacial-interglacial terrigenous provenance in the southeastern Atlantic Ocean: the importance of deep-water sources and surface currents. Geology 34(7):545–548CrossRefGoogle Scholar
  23. Korff L, von Dobeneck T, Frederichs T, Kasten S, Kuhn G, Gersonde R, Diekmann B (2016) Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: evidence for glacial oxygen depletion and carbon trapping. Paleoceanography 31(5):600–624Google Scholar
  24. Mangini A, Jung M, Laukenmann S (2001) What do we learn from peaks of uranium and of manganese in deep sea sediments? Mar Geol 177(1):63–78CrossRefGoogle Scholar
  25. Mengel M, Levermann A (2014) Ice plug prevents irreversible discharge from East Antarctica. Nature Clim Change 4(6):451–455CrossRefGoogle Scholar
  26. Murray RW, Miller DJ, Kryc KA (2000) Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma–atomic emission spectrometry (ICP-AES). ODP Technical Note. doi: 10.2973/ Google Scholar
  27. Naish T, Powell R, Levy R, Wilson G, Scherer R, Talarico F, Krissek L, Niessen F, Pompilio M, Wilson T, Carter L, DeConto R, Huybers P, McKay R, Pollard D, Ross J, Winter D, Barrett P, Browne G, Cody R, Cowan E, Crampton J, Dunbar G, Dunbar N, Florindo F, Gebhardt C, Graham I, Hannah M, Hansaraj D, Harwood D, Helling D, Henrys S, Hinnov L, Kuhn G, Kyle P, Läufer A, Maffioli P, Magens D, Mandernack K, McIntosh W, Millan C, Morin R, Ohneiser C, Paulsen T, Persico D, Raine I, Reed J, Riesselman C, Sagnotti L, Schmitt D, Sjunneskog C, Strong P, Taviani M, Vogel S, Wilch T, Williams T (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(7236):322–328CrossRefGoogle Scholar
  28. Nürnberg CC, Bohrmann G, Schlüter M, Frank M (1997) Barium accumulation in the Atlantic sector of the Southern Ocean: results from 190,000-year records. Paleoceanography 12:594–603CrossRefGoogle Scholar
  29. Orejola N, Passchier S (2014) Sedimentology of lower Pliocene to Upper Pleistocene diamictons from IODP Site U1358, Wilkes Land margin, and implications for East Antarctic Ice Sheet dynamics. Antarctic Sci 26(02):183–192. doi: 10.1017/S0954102013000527 CrossRefGoogle Scholar
  30. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I Oceanogr Res Pap 42(5):641–673CrossRefGoogle Scholar
  31. Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55–109CrossRefGoogle Scholar
  32. Passchier S (2011) Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica. Paleoceanography 26, PA4204. doi: 10.1029/2010PA002061 CrossRefGoogle Scholar
  33. Pattan JN, Mir IA, Parthiban G, Karapurkar SG, Matta VM, Naidu PD, Naqvi SW (2013) Coupling between suboxic condition in sediments of the western Bay of Bengal and southwest monsoon intensification: a geochemical study. Chem Geol 343:55–66CrossRefGoogle Scholar
  34. Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30(8):747–750CrossRefGoogle Scholar
  35. Reinardy BT, Escutia C, Iwai M, Jimenez-Espejo FJ, Cook C, van de Flierdt T, Brinkhuis H (2015) Repeated advance and retreat of the East Antarctic Ice Sheet on the continental shelf during the early Pliocene warm period. Palaeogeogr Palaeoclimatol Palaeoecol 422:65–84CrossRefGoogle Scholar
  36. Riedinger N, Kasten S, Gröger J, Franke C, Pfeifer K (2006) Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth Planet Sci Lett 241(3):876–887CrossRefGoogle Scholar
  37. Schenau SJ, Prins MA, De Lange GJ, Monnin C (2001) Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments. Geochim Cosmochim Acta 65(10):1545–1556CrossRefGoogle Scholar
  38. Schmidtko S, Heywood KJ, Thompson AF, Aoki S (2014) Multidecadal warming of Antarctic waters. Science 346(6214):1227–1231CrossRefGoogle Scholar
  39. Shipboard Scientific Party (1989) Proc ODP, Init Repts. In: Barron J, Larsen B (eds) Ocean Drilling Program, College Station, TX, 1989, vol 119, p 397–458. doi: 10.2973/
  40. Sniderman JK, Woodhead JD, Hellstrom J, Jordan GJ, Drysdale RN, Tyler JJ, Porch N (2016) Pliocene reversal of late Neogene aridification. Proc Natl Acad Sci 113(8):1999–2004CrossRefGoogle Scholar
  41. Tauxe L, Stickley CE, Sugisaki S, Bijl PK, Bohaty SM, Brinkhuis H, Escutia C, Flores JA, Houben AJP, Iwai M, Jiménez-Espejo F, McKay R, Passchier S, Pross J, Riesselman CR, Röhl U, Sangiorgi F, Welsh K, Klaus A, Fehr A, Bendle JAP, Dunbar R, Gonzàlez J, Hayden T, Katsuki K, Olney MP, Pekar SF, Shrivastava PK, van de Flierdt T, Williams T, Yamane M (2012) Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction. Paleoceanography 27, PA2214. doi: 10.1029/2012PA002308 CrossRefGoogle Scholar
  42. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell, CarltonGoogle Scholar
  43. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1):12–32CrossRefGoogle Scholar
  44. Whitehead JM, Bohaty SM (2003) Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165. Paleoceanography 18(3):1075. doi: 10.1029/2002PA000829 CrossRefGoogle Scholar
  45. Whitehead JM, Wotherspoon S, Bohaty SM (2005) Minimal Antarctic sea ice during the Pliocene. Geology 33(2):137–140CrossRefGoogle Scholar
  46. Williams GD, Bindoff NL, Marsland SJ, Rintoul SR (2008) Formation and export of dense shelf water from the Adélie Depression, East Antarctica. J Geophys Res Oceans 113(C4), C04039. doi: 10.1029/2007JC004346 CrossRefGoogle Scholar
  47. Zhang Z, Nisancioglu KH, Ninnemann US (2013) Increased ventilation of Antarctic deep water during the warm mid-Pliocene. Nature Commun 4:1499. doi: 10.1038/ncomms2521 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Earth and Environmental StudiesMontclair State UniversityMontclairUSA

Personalised recommendations