Geo-Marine Letters

, Volume 37, Issue 2, pp 193–205 | Cite as

Integration of TerraSAR-X, RapidEye and airborne lidar for remote sensing of intertidal bedforms on the upper flats of Norderney (German Wadden Sea)

  • Winny AdolphEmail author
  • Richard Jung
  • Alena Schmidt
  • Manfred Ehlers
  • Christian Heipke
  • Alexander Bartholomä
  • Hubert Farke
Technical Paper


The Wadden Sea is a large coastal transition area adjoining the southern North Sea uniting ecological key functions with an important role in coastal protection. The region is strictly protected by EU directives and national law and is a UNESCO World Heritage Site, requiring frequent quality assessments and regular monitoring. In 2014 an intertidal bedform area characterised by alternating crests and water-covered troughs on the tidal flats of the island of Norderney (German Wadden Sea sector) was chosen to test different remote sensing methods for habitat mapping: airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye). The results revealed that, although sensitive to different surface qualities, all sensors were able to image the bedforms. A digital terrain model generated from the lidar data shows crests and slopes of the bedforms with high geometric accuracy in the centimetre range, but high costs limit the operation area. TerraSAR-X data enabled identifying the positions of the bedforms reflecting the residual water in the troughs also with a high resolution of up to 1.1 m, but with larger footprints and much higher temporal availability. RapidEye data are sensitive to differences in sediment moisture employed to identify crest areas, slopes and troughs, with high spatial coverage but the lowest resolution (6.5 m). Monitoring concepts may differ in their remote sensing requirements regarding areal coverage, spatial and temporal resolution, sensitivity and geometric accuracy. Also financial budgets limit the selection of sensors. Thus, combining differing assets into an integrated concept of remote sensing contributes to solving these issues.


Lidar Synthetic Aperture Radar Synthetic Aperture Radar Image Lidar Data Bedforms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study forms part of the interdisciplinary research project “Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht – WIMO” (“Scientific Monitoring Concepts for the German Bight”), jointly funded by the Ministry for Environment, Energy and Climate Protection and the Ministry for Science and Culture of the Federal State of Lower Saxony. The authors thank the German Aerospace Centre (DLR) for delivering an extensive set of TerraSAR-X images relating to Proposal ID COA1075 and the Lower Saxony State Department for Waterway, Coastal and Nature Conservation (NLWKN) for providing lidar data. Also acknowledged are constructive assessments by V.B. Ernstsen and an anonymous reviewer.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Adolph W, Schückel U, Son CS, Jung R, Bartholomä A, Ehlers M, Kröncke I, Lehner S, Farke H (2016) Monitoring spatiotemporal trends in intertidal bedforms of the German Wadden Sea in 2009–2015 with TerraSAR-X, including links with sediments and benthic macrofauna. Geo-Mar Lett 37 (in press). doi: 10.1007/s00367-016-0478-y
  2. Airbus Defence & Space (2014) Radiometric calibration of TerraSAR-X Data. Beta Naught and Sigma Naught coefficient calculation. Airbus Defence & Space, TSXX-ITD-TN-0049-radiometric_calculations_I3.00.docGoogle Scholar
  3. Aubert M, Baghdadi N, Zribi M, Douaoui A, Loumagne C, Baup F, El Haji M, Garrigues S (2011) Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sens Environ 115(8):1801–1810. doi: 10.1016/j.rse.2011.02.021 CrossRefGoogle Scholar
  4. BlackBridge (2013) Satellite imagery product specifications. BlackBridge. Accessed 25 November 2013. <>
  5. Choe B-H, Kim D-J, Hwang J-H, Oh Y, Moon WM (2012) Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data. Estuar Coast Shelf Sci 97:28–37. doi: 10.1016/j.ecss.2011.11.007 CrossRefGoogle Scholar
  6. Decho AW, Kawaguchi T, Allison MA, Louchard EM, Reid RP, Stephens FC, Voss KJ, Wheatcroft RA, Tyloe BB (2003) Sediment properties influencing upwelling spectral reflectance signatures: the “biofilm gel effect”. Limnol Oceanogr 48(1):431–443. doi: 10.4319/lo.2003.48.1_part_2.0431 CrossRefGoogle Scholar
  7. Dehouck A, Lafon V, Baghdadi N, Marieu V (2012) Use of optical and radar data in synergy for mapping intertidal flats and coastal salt-marshes (Arcachon lagoon, France). In: IGARSS 2012 I.E. Int Geoscience and Remote Sensing Symp, Munich, Germany, pp 2853–2856. doi: 10.1109/IGARSS.2012.6350837
  8. European Commission (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities, L 206, 22.07.1992, pp 1–66Google Scholar
  9. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities, L 327, 22.12.2000, pp 1–72Google Scholar
  10. European Commission (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off J Eur Communities, L 164, 25.6.2008, pp 19–40Google Scholar
  11. Gade M, Alpers W, Melsheimer C, Tanck G (2008) Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data. Remote Sens Environ 112(4):1603–1613. doi: 10.1109/IGARSS.2012.6350837 CrossRefGoogle Scholar
  12. Gade M, Melchionna S, Stelzer K, Kohlus J (2014) Multi-frequency SAR data help improving the monitoring of intertidal flats on the German North Sea coast. Estuar Coast Shelf Sci 140:32–42. doi: 10.1109/IGARSS.2012.6350837 CrossRefGoogle Scholar
  13. Gade M, Melchionna S, Kemme L (2015) Analyses of multi-year synthetic aperture radar imagery of dry-fallen intertidal flats. Int Arch Photogramm Remote Sens Spat Inf Sci XL-7(W3):941–947. doi: 10.5194/isprsarchives-XL-7-W3-941-2015 CrossRefGoogle Scholar
  14. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621. doi: 10.1109/TSMC.1973.4309314 CrossRefGoogle Scholar
  15. Heygster G, Dannenberg J, Notholt J (2010) Topographic mapping of the German tidal flats analyzing SAR images with the waterline method. IEEE Trans Geosci Remote Sens 48(3):1019–1030. doi: 10.1109/TGRS.2009.2031843 CrossRefGoogle Scholar
  16. Ibrahim E, Adam S, van der Wal D, De Wever A, Sabbe K, Forster R, Monbaliu J (2009) Assessment of unsupervised classification techniques for intertidal sediments. eProc EARSeL 8:158–179, Google Scholar
  17. Jung R, Ehlers M (2016) Comparison of two feature selection methods for the separability analysis of intertidal sediments with spectrometric datasets in the German Wadden Sea. Int J Appl Earth Obs Geoinf 52:175–191. doi: 10.1016/j.jag.2016.06.009 CrossRefGoogle Scholar
  18. Jung R, Adolph W, Ehlers M, Farke H (2015) A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea – a case study at Norderney. Remote Sens Environ 170:188–202. doi: 10.1016/j.rse.2015.09.018 CrossRefGoogle Scholar
  19. Kim D-J, Choe B-H, Moon WM (2013) Remote sensing of oyster reefs and groundwater discharge in coastal area using synthetic aperture radar. In: IEEE/GRSS (ed) Proc IEEE Int Geoscience and Remote Sensing Symp (IGARSS), 21–26 July 2013, Melbourne, Australia. Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp 2435–2438. doi: 10.1109/IGARSS.2013.6723312 CrossRefGoogle Scholar
  20. Lee Y-K, Park J-W, Choi J-K, Oh Y, Won J-S (2012) Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats. Estuar Coast Shelf Sci 115:366–376. doi: 10.1016/j.ecss.2012.10.003 CrossRefGoogle Scholar
  21. Li Z, Heygster G, Notholt J (2014) Intertidal topographic maps and morphological changes in the German Wadden Sea between 1996–1999 and 2006–2009 from the waterline method and SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3210–3224. doi: 10.1109/JSTARS.2014.2313062 CrossRefGoogle Scholar
  22. Manakos IK, Manevski C, Kalaitzidis S, Edler D (2011) Comparison between FLAASH and ATCOR atmospheric correction modules on the basis of WorldView-2 Imagery and in situ spectroradiometric measurements. In: EARSeL 7th SIG-Imaging Spectroscopy Workshop, EdinburghGoogle Scholar
  23. Mason DC, Scott TR, Dance SL (2010) Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007. Estuar Coast Shelf Sci 87(3):487–496. doi: 10.1016/j.ecss.2010.01.015 CrossRefGoogle Scholar
  24. Matthew MW, Adler-Golden SM, Berk A, Felde G, Anderson GP, Gorodetsky D, Paswaters S, Shippert M (2002) Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. In: Proc 31st Applied Imagery Pattern Recognition Workshop From Color to Hyperspectral: Advancements in Spectral Imagery Exploitation, Washington, pp 157–163. doi: 10.1109/AIPR.2002.1182270
  25. Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1(1):6–43. doi: 10.1109/MGRS.2013.2248301 CrossRefGoogle Scholar
  26. Müller G, Stelzer K, Smollich S, Gade M, Adolph W, Melchionna S, Kemme L, Geißler J, Millat G, Reimers H-C, Kohlus K, Eskildsen K (2016) Remotely sensing the German Wadden Sea—a new approach to address national and international environmental legislation. Environ Monit Assess 188(10):595. doi: 10.1007/s10661-016-5591-x CrossRefGoogle Scholar
  27. Niedermeier A, Hoja D, Lehner S (2005) Topography and morphodynamics in the German Bight using SAR and optical remote sensing data. Ocean Dyn 55(2):100–109. doi: 10.1007/s10236-005-0114-2 CrossRefGoogle Scholar
  28. Nieuwhof S, Herman P, Dankers N, Troost K, van der Wal D (2015) Remote sensing of epibenthic shellfish using synthetic aperture radar satellite imagery. Remote Sens 7(4):3710–3734. doi: 10.3390/rs70403710 CrossRefGoogle Scholar
  29. Rainey MP, Tyler AN, Bryant RG, Gilvear DJ, McDonald P (2000) The influence of surface and interstitial moisture on the spectral characteristics of intertidal sediments: implications for airborne image acquisition and processing. Int J Remote Sens 21(16):3025–3038. doi: 10.1080/01431160050144938 CrossRefGoogle Scholar
  30. Ryu J-H, Eom JA, Choi J-K (2010) Application of airborne remote sensing to the surface sediment classification in a tidal flat. In: 2010 I.E. Int Geoscience and Remote Sensing Symp (IGARSS), pp 942–945. doi: 10.1109/IGARSS.2010.5653413
  31. Schmidt A, Rottensteiner F, Soergel U (2013) Water-land-classification in coastal areas with full waveform lidar data. PFG 2:71–81Google Scholar
  32. SCOP-WWW (2001) Institute of Photogrammetry and Remote Sensing, Vienna University of Technology.
  33. Small C, Steckler M, Seeber L, Akhter SH, Goodbred S, Mia B, Imam B (2009) Spectroscopy of sediments in the Ganges-Brahmaputra delta: spectral effects of moisture, grain size and lithology. Remote Sens Environ 113:342–361. doi: 10.1016/j.rse.2008.10.009 CrossRefGoogle Scholar
  34. Sørensen TH, Bartholdy K, Christiansen C, Pedersen JBT (2006) Intertidal surface type mapping in the Danish Wadden Sea. Mar Geol 235:87–99. doi: 10.1016/j.margeo.2006.10.007 CrossRefGoogle Scholar
  35. Stelzer K, Geißler J, Gade M, Eskildsen K, Kohlus J, Farke H, Reimers HC (2010) DeMarine Umwelt: Operationalisierung mariner GMES-Dienste in Deutschland. Integration optischer und SAR Erdbeobachtungsdaten für das Wattenmeermonitoring. Jahresbericht 2009–2010, pp 37–55Google Scholar
  36. Van der Wal D, Herman PMJ (2007) Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sens Environ 111(1):89–106. doi: 10.1016/j.rse.2007.03.019 CrossRefGoogle Scholar
  37. Van der Wal D, Herman PMJ, Wielemaker-van den Dool A (2005) Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery. Remote Sens Environ 98(1):96–109. doi: 10.1016/j.rse.2005.06.004 CrossRefGoogle Scholar
  38. Wiehle S, Lehner S (2015) Automated waterline detection in the Wadden Sea using high-resolution TerraSAR-X images. J Sens 2015:450857. doi: 10.1155/2015/450857 CrossRefGoogle Scholar
  39. Winter C, Herrling G, Bartholomä A, Capperucci R, Callies U, Heipke C, Schmidt A, Hillebrand H, Reimers C, Bremer P, Weiler R (2014) Scientific concepts for monitoring the ecological state of German coastal seas (in German). Wasser und Abfall 07-08/2014:21–26. doi: 10.1365/s35152-014-0685-7

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Park Authority “Lower Saxony Wadden Sea” (NLPV)WilhelmshavenGermany
  2. 2.Institute for Geoinformatics and Remote Sensing (IGF)University of OsnabrückOsnabrückGermany
  3. 3.Institute of Photogrammetry and GeoInformation (IPI)Leibniz University HannoverHannoverGermany
  4. 4.Senckenberg am Meer, Marine Research DepartmentWilhelmshavenGermany

Personalised recommendations