Geo-Marine Letters

, Volume 37, Issue 2, pp 79–91 | Cite as

Monitoring spatiotemporal trends in intertidal bedforms of the German Wadden Sea in 2009–2015 with TerraSAR-X, including links with sediments and benthic macrofauna

  • Winny AdolphEmail author
  • Ulrike Schückel
  • Chang Soo Son
  • Richard Jung
  • Alexander Bartholomä
  • Manfred Ehlers
  • Ingrid Kröncke
  • Susanne Lehner
  • Hubert Farke


Satellite synthetic aperture radar (SAR) holds a high potential for remote sensing in intertidal areas. Geomorphic structures of the sediment surface generating patterns of water cover contrasting with exposed sediment surfaces can clearly be detected. This study explores intertidal bedforms on the upper flats bordering the island of Norderney in the German Wadden Sea using TerraSAR-X imagery from 2009 to 2015. Such bedforms are common in the Wadden Sea, forming crests alternating with water-covered troughs oriented in a north-easterly direction. In the western Norderney area, the crest-to-crest distance ranges from 50–130 m, and bedform length can reach 500 m. Maximum height differences between crests and troughs are 20 cm. A simple method is developed to extract the water-covered troughs from TerraSAR-X images for spatiotemporal analysis of bedform positions in a GIS. It is earmarked by unsupervised ISODATA classification of textural parameters, contrasting with various algorithm-based methods pursued in earlier studies of waterline detection. The high-frequency TerraSAR-X data reveal novel evidence of a bedform shift in an easterly direction during the study period. Height profiles measured with RTK-DGPS along defined transects support the findings from TerraSAR-X data. First investigations to characterise sediments and macrofauna show that benthic macrofauna community structure differs significantly between crests and troughs, comprising mainly fine sands. Evidently, bedform formation has implications for benthic faunal diversity in back-barrier settings of the Wadden Sea. SAR remote sensing provides pivotal data on bedform dynamics.


Tidal Flat Synthetic Aperture Radar Synthetic Aperture Radar Image Bedforms Synthetic Aperture Radar Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study forms part of the “Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht – WIMO” (“Scientific Monitoring Concepts for the German Bight”) project jointly funded by the Ministry for Environment, Energy and Climate Protection, and the Ministry for Science and Culture of the Federal State of Lower Saxony. Sedimentological work was facilitated by a fellowship of the Hanse Institute for Advanced Study, and a grant from the Korean Ministry of Oceans and Fisheries (PJT200538). The authors thank the German Aerospace Center for supplying the TerraSAR-X images. Udo Uebel (ICBM-Terramare, Wilhelmshaven) helped with the RTK-DGPS measurements. Also acknowledged are constructive assessments by two anonymous reviewers.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2016_478_MOESM1_ESM.pdf (128 kb)
ESM 1 (PDF 127 kb)


  1. Adolph W, Jung R, Schmidt A, Ehlers M, Heipke C, Bartholomä A, Farke H (2016) Integration of TerraSAR-X, RapidEye and airborne lidar for remote sensing of intertidal bedforms on the upper flats of Norderney (German Wadden Sea). Geo-Mar Lett 36 (accepted)Google Scholar
  2. Airbus Defence & Space (2014) Radiometric calibration of TerraSAR-X Data. Beta Naught and Sigma Naught coefficient calculation. Airbus Defence & Space. TSXX-ITD-TN-0049-radiometric_calculations_I3.00.docGoogle Scholar
  3. Allen JRL (1980) Sand waves: a model of origin and internal structure. Sediment Geol 26:281–328. doi: 10.1016/0037-0738(80)90022-6 CrossRefGoogle Scholar
  4. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  5. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172. doi: 10.1306/212F9138-2B24-11D7-8648000102C1865D CrossRefGoogle Scholar
  6. Baptist MJ, van Dalfsen J, Weber A, Passchier S, van Heteren S (2006) The distribution of macrozoobenthos in the southern North Sea in relation to meso-scale bedforms. Estuar Coast Shelf Sci 68(3-4):538–546. doi: 10.1016/j.ecss.2006.02.023 CrossRefGoogle Scholar
  7. Bartholdy J, Bartholomae A, Flemming BW (2002) Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Mar Geol 188(3-4):391–413. doi: 10.1016/S0025-3227(02)00419-X CrossRefGoogle Scholar
  8. Borsje BW, de Vries MB, Bouma TJ, Besio G, Hulscher SJMH, Herman PMJ (2009) Modeling bio-geomorphological influences for offshore sandwaves. Cont Shelf Res 29(9):1289–1301. doi: 10.1016/j.csr.2009.02.008 CrossRefGoogle Scholar
  9. Brezina J (1986) Macrogranometer MC86, Laboratory manual. Macrogranometry, HeidelbergGoogle Scholar
  10. Buijsman MC, Ridderinkhof H (2008) Long-term evolution of sand waves in the Marsdiep inlet. II: relation to hydrodynamics. Cont Shelf Res 28(9):1202–1215. doi: 10.1016/j.csr.2008.02.014
  11. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Google Scholar
  12. CWSS (2008) Nomination of the Dutch-German Wadden Sea as World Heritage Site. Volume 1. Wilhelmshaven. Accessed 20 Dec 2015
  13. de Jonge VN, de Boer WF, de Jong DJ, Brauer VS (2012) Long-term mean annual microphytobenthos chlorophyll a correlates with air temperature. Mar Ecol Prog Ser 468:43–56. doi: 10.3354/meps09954 CrossRefGoogle Scholar
  14. Dalrymple RW, Knight RJ, Lambiase JJ (1978) Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275(5676):100–104. doi: 10.1038/275100a0 CrossRefGoogle Scholar
  15. Davies RA, Flemming BW (1991) Time-series study of mesoscale tidal bedforms, Martens Plate, Wadden Sea, Germany. Can Soc Petrol Geol Mem 16:275–282Google Scholar
  16. Dellepiane S, De Laurentiis R, Giordano F (2004) Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recogn Lett 25(13):1461–1470. doi: 10.1016/j.patrec.2004.05.022 CrossRefGoogle Scholar
  17. Diesing M, Kubicki A, Winter C, Schwarzer K (2006) Decadal scale stability of sorted bedforms, German Bight, southeastern North Sea. Cont Shelf Res 26(8):902–916. doi: 10.1016/j.csr.2006.02.009 CrossRefGoogle Scholar
  18. Dolch T, Reise K (2010) Long-term displacement of intertidal seagrass and mussel beds by expanding large sandy bedforms in the northern Wadden Sea. J Sea Res 63(2):93–101. doi: 10.1016/j.seares.2009.10.004 CrossRefGoogle Scholar
  19. DWD (2013a) Orkantief CHRISTIAN am 28. Oktober 2013. Deutscher Wetterdienst. Accessed 3 Dec 2015
  20. DWD (2013b) Orkantief XAVER über Nordeuropa vom 5. bis 7. Dezember 2013. Stand: 30. Dezember 2013. Deutscher Wetterdienst. Accessed 3 Dec 2015
  21. Eitner V, Kaiser R, Niemeyer HD (1996) Nearshore sediment transport processes due to moderate hydrodynamic conditions. In: Batist M de, Jacobs P (eds) Geology of siliciclastic shelf seas. Geol Soc Lond Spec Publ 117:267–288. doi: 10.1144/GSL.SP.1996.117.01.16
  22. Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholomä A, Flemming BW, Bartholdy J (2005) Development of subaqueous barchanoid-shaped dunes due to lateral grain size variability in a tidal inlet channel of the Danish Wadden Sea. J Geophys Res 110, F04S08. doi: 10.1029/2004JF000180 CrossRefGoogle Scholar
  23. Flemming BW, Ziegler K (1995) High-resolution grain size distribution patterns and textural trends in the back-barrier environment of Spiekeroog Island (southern North Sea). Senckenberg Marit 26:1–24Google Scholar
  24. Fritz T, Eineder M (2010) TerraSAR-X, ground segment, basic product specification document. CAF - Cluster Applied Remote Sensing. DLR TX-GS-DD-3302, Issue 1.7Google Scholar
  25. Frost VS, Stiles JA, Shanmugan KS, Holtzman JC (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 4(2):157–166. doi: 10.1109/TPAMI.1982.4767223 CrossRefGoogle Scholar
  26. Gómez EA, Cuadrado DG, Pierini JO (2010) Sand transport on an estuarine submarine dune field. Geomorphology 121(3-4):257–265. doi: 10.1016/j.geomorph.2010.04.022 CrossRefGoogle Scholar
  27. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621. doi: 10.1109/TSMC.1973.4309314 CrossRefGoogle Scholar
  28. Hayes MO (1979) Barrier islands morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier islands. Academic Press, New York, pp 1–27Google Scholar
  29. Heygster G, Dannenberg J, Notholt J (2010) Topographic mapping of the German tidal flats analyzing SAR images with the waterline method. IEEE Trans Geosci Remote Sensing 48(3):1019–1030. doi: 10.1109/TGRS.2009.2031843 CrossRefGoogle Scholar
  30. Hoekstra P, Bell P, van Santen P, Roode N, Levoy F, Whitehouse R (2004) Bedform migration and bedload transport on an intertidal shoal. Cont Shelf Res 24(11):1249–1269. doi: 10.1016/j.csr.2004.03.006 CrossRefGoogle Scholar
  31. Kim D-J, Moon WM, Kim G, Park S-E, Lee H (2011) Submarine groundwater discharge in tidal flats revealed by space-borne synthetic aperture radar. Remote Sens Environ 115(2):793–800. doi: 10.1016/j.rse.2010.11.009 CrossRefGoogle Scholar
  32. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi: 10.1007/s004420100716 CrossRefGoogle Scholar
  33. Lehner S, Tings B (2015) Maritime products using TerraSAR-X and Sentinel-1 imagery. International Archives Photogrammetry Remote Sensing Spatial Information Sciences XL-7/W3:967–973. doi: 10.5194/isprsarchives-XL-7-W3-967-2015 CrossRefGoogle Scholar
  34. Li Z, Heygster G, Notholt J (2014) Intertidal topographic maps and morphological changes in the German Wadden Sea between 1996–1999 and 2006–2009 from the waterline method and SAR images. IEEE J Sel Top Appl Earth Observations Remote Sensing 7(8):3210–3224. doi: 10.1109/JSTARS.2014.2313062 CrossRefGoogle Scholar
  35. Markert E, Kröncke I, Kubicki A (2015) Small scale morphodynamics of shoreface-connected ridges and their impact on benthic macrofauna. J Sea Res 99:47–55. doi: 10.1016/j.seares.2015.02.001 CrossRefGoogle Scholar
  36. Mason DC, Davenport LJ (1996) Accurate and efficient determination of the shoreline in ERS-1 SAR images. IEEE Trans Geosci Remote Sens 34(5):1243–1253. doi: 10.1109/36.536540 CrossRefGoogle Scholar
  37. McCave IN (1971) Sand waves in the North Sea off the coast of Holland. Mar Geol 10(3):199–225. doi: 10.1016/0025-3227(71)90063-6 CrossRefGoogle Scholar
  38. Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1(1):6–43. doi: 10.1109/MGRS.2013.2248301 CrossRefGoogle Scholar
  39. Morrisey DJ (1988) Differences in effects of grazing by deposit-feeders Hydrobia ulvae (Pennant) (Gastropoda: Prosobranchia) and Corophium arenarium Crawford (Amphipoda) on sediment microalgal populations. II Quantitative effects. J Exp Mar Biol Ecol 118:43–53. doi: 10.1016/0022-0981(88)90121-9 CrossRefGoogle Scholar
  40. Niedermeier A, Hoja D, Lehner S (2005) Topography and morphodynamics in the German Bight using SAR and optical remote sensing data. Ocean Dyn 55(2):100–109. doi: 10.1007/s10236-005-0114-2 CrossRefGoogle Scholar
  41. Niemeyer HD (1987) Measurements of tidal currents in groyne fields (in German). Jber 1986 Forsch-Stelle Küste, vol 38Google Scholar
  42. Niemeyer HD (1994) Long-term morphological development of the East Frisian Islands and coast. In: Edge BL (ed) Coastal Engineering 1994. Proc 24th Int Conf Coastal Engineering, Kobe, vol 1, p 2417–2433. doi: 10.1061/9780784400890.176
  43. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: Community Ecology Package. R package version 2.4-0.
  44. Pratt WK (2007) Digital image processing. PIKS Scientific inside, 4th edn. Wiley-Interscience, HobokenGoogle Scholar
  45. Schückel U, Beck M, Kröncke I (2013) Spatial variability in structural and functional aspects of macrofauna communities and their environmental parameters in the Jade Bay Wadden Sea Lower Saxony, southern North Sea. Helgol Mar Res 67:121–136CrossRefGoogle Scholar
  46. Shi Z, Fung KB (1994) A comparison of digital speckle filters. In: Proc IGARSS 94, p 2129–2133. doi: 10.1109/IGARSS.1994.399671
  47. Tou JT, Gonzalez RC (1974) Pattern recognition principles. Addison-Wesley, Reading. doi: 10.1002/zamm.19770570626 Google Scholar
  48. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, de Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57. doi: 10.1016/j.ocecoaman.2011.12.022 CrossRefGoogle Scholar
  49. Whitmeyer SJ, FitzGerald DM (2008) Episodic dynamics of a sand wave field. Mar Geol 252(1-2):24–37. doi: 10.1016/j.margeo.2008.03.009 CrossRefGoogle Scholar
  50. Wiehle S, Lehner S (2015) Automated waterline detection in the Wadden Sea using high-resolution TerraSAR-X images. J Sensors 2015:450857. doi: 10.1155/2015/450857 CrossRefGoogle Scholar
  51. Winter C, Herrling G, Bartholomä A, Capperucci R, Callies U, Heipke C, Schmidt A, Hillebrand H, Reimers C, Bremer P, Weiler R (2014) Scientific concepts for monitoring the ecological state of German coastal seas (in German). Wasser und Abfall 07-08/2014:21–26. doi: 10.1365/s35152-014-0685-7
  52. Zarillo GA (1982) Stability of bedforms in a tidal environment. Mar Geol 48:337–351. doi: 10.1016/0025-3227(82)90103-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Wadden Sea National Park Authority of Lower Saxony (NLPV)WilhelmshavenGermany
  2. 2.Institute for Geoinformatics and Remote Sensing (IGF)University of OsnabrückOsnabrückGermany
  3. 3.Schleswig-Holstein Agency for Coastal Defence, National Park and Marine ConservationNational Park AuthorityTönningGermany
  4. 4.Marine Research DepartmentSenckenberg am MeerWilhelmshavenGermany
  5. 5.Faculty of Earth System & Environmental SciencesChonnam National UniversityGwangjuSouth Korea
  6. 6.German Aerospace Center (DLR), Remote Sensing Technology InstituteMaritime Safety and Security LabBremenGermany

Personalised recommendations