Geo-Marine Letters

, Volume 36, Issue 6, pp 405–414 | Cite as

Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea)

  • D. Casas
  • F. Chiocci
  • D. Casalbore
  • G. Ercilla
  • J. Ortiz de Urbina


Regional inventories and magnitude-frequency relationships provide critical information about landslides and represent a first step in landslide hazard assessment. Despite this, the availability of accurate inventories in the marine environment remains poor because of the commonly low accessibility of high-resolution data at regional scales. Evaluating high-resolution bathymetric data spanning the time interval 2007–2011 for the Gioa Basin of the southern Tyrrhenian Sea yielded a landslide inventory of 428 events affecting an area of >85 km2 and mobilizing approximately 1.4 km3 of sediment. This is the first time that this area is studied in such detail, justifying comparison with other areas both onland and offshore. Statistical analyses revealed that the cumulative distribution of the dataset is characterized by two right-skewed probability distributions with a heavy tail. Moreover, evidence of a rollover for smaller landslide volumes is consistent with similar trends reported in other settings worldwide. This may reflect an observational limitation and the site-specific geologic factors that influence landslide occurrence. The robust validation of both power-law and log-normal probability distributions enables the quantification of a range of probabilities for new extreme events far from the background landslide sizes defined in the area. This is a useful tool at regional scales, especially in geologically active areas where submarine landslides can occur frequently, such as the Gioia Basin.


  1. Antonioli F, Ferranti L, Lambeck K, Kershaw S, Verrubbi V, Dai Pra G (2006) Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics 422:23–40CrossRefGoogle Scholar
  2. Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289CrossRefGoogle Scholar
  3. Assier-Rzadkiewicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure Appl Geophys 157:1717–1727Google Scholar
  4. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374. doi:10.1103/PhysRevA.38.364 CrossRefGoogle Scholar
  5. Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlinear Process Geophys 16:179–188. doi:10.5194/npg-16-179-2009 CrossRefGoogle Scholar
  6. Casalbore D, Romagnoli C, Bosman A, Chiocci FL (2011) Potential tsunamigenic landslides at Stromboli volcano (Italy): insight from marine DEM analysis. Geomorphology 126:42–50. doi:10.1016/j.geomorph.2010.10.026 CrossRefGoogle Scholar
  7. Casalbore D, Bosman A, Chiocci F (2012) Study of recent small-scale landslides in geologically active marine areas through repeated multibeam surveys: examples from the Southern Italy. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences, vol 31, Advances in Natural and Technological Hazards Research. Springer, Heidelberg, pp 573–582CrossRefGoogle Scholar
  8. Casalbore D, Bosman A, Ridente D, Chiocci F (2014) Coastal and submarine landslides in the tectonically-active Tyrrhenian Calabrian margin (Southern Italy): examples and geohazard implications. In: Krastel S (ed) Submarine mass movements and their consequences, vol 37, Advances in Natural and Technological Hazards Research. Springer, Heidelberg, pp 261–269. doi:10.1007/978-3-319-00972-8 CrossRefGoogle Scholar
  9. Catalano S, De Guidi G, Monaco C, Tortorici G, Tortorici L (2008) Active faulting and seismicity along the Siculo–Calabrian Rift Zone (Southern Italy). Tectonophysics 453:177–192. doi:10.1016/j.tecto.2007.05.008 CrossRefGoogle Scholar
  10. Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the US Atlantic margin. Mar Geol 264:16–27. doi:10.1016/j.margeo.2008.08.007 CrossRefGoogle Scholar
  11. Chiocci FL, Ridente D (2011) Regional-scale seafloor mapping and geohazard assessment. The experience from the Italian project MaGIC (Marine Geohazards along the Italian Coasts). Mar Geophys Res 32:13–23. doi:10.1007/s11001-011-9120-6 CrossRefGoogle Scholar
  12. Chiocci FL, Romagnoli C, Tommasi P, Bosman A (2008) The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms. J Geophys Res Solid Earth 113:B10102. doi:10.1029/2007JB005172 CrossRefGoogle Scholar
  13. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703. doi:10.1137/070710111 CrossRefGoogle Scholar
  14. Colantoni P, Gennesseaux M, Vanney JR, Ulzega A, Melegari G, Trombetta A (1992) Dynamic processes in the Gioia Tauro submarine canyon (Tyrrhenian Sea) (in Italian). Gior Geol 54:199–213Google Scholar
  15. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64CrossRefGoogle Scholar
  16. Dunning SA, Mitchell WA, Petley DN, Rosser NJ, Cox NJ (2007) Landslides predating and triggered by the 2005 Kashmir earthquake: rockfall to rock avalanches. Geophys Res Abstr 9:06376Google Scholar
  17. Dussauge C, Grasso J, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. J Geophys Res 108:2286. doi:10.1029/2001JB000650 CrossRefGoogle Scholar
  18. Fabbri A, Ghisetti F, Vezzani L (1980) The Peloritani-Calabria range and the Gioia basin in the Calabrian arc (Southern Italy): relationships between land and marine data. Geol Romana 19:131–150Google Scholar
  19. Ferranti L, Antonioli F, Mauz B, Amorosi A, Dai Pra G, Mastronuzzi G, Monaco C, Orrù P, Pappalardo M, Radtke U, Renda P, Romano P, Sansò P, Verrubbi V (2006) Markers of the last interglacial sea-level high stand along the coast of Italy: tectonic implications. Quat Int 145:30–54CrossRefGoogle Scholar
  20. Ferranti L, Monaco C, Morelli D, Antonioli F, Maschio L (2008) Holocene activity of the Scilla Fault, Southern Calabria: insights from coastal morphological and structural investigations. Tectonophysics 453:74–93. doi:10.1016/j.tecto.2007.05.006 CrossRefGoogle Scholar
  21. Goswami R, Mitchell NC, Argnani A, Brocklehurst SH (2014) Geomorphology of the western Ionian Sea between Sicily and Calabria, Italy. Geo-Mar Lett 34:419–433. doi:10.1007/s00367-014-0374-2 CrossRefGoogle Scholar
  22. Guarnieri P, Pirrotta C (2008) The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily). Geomorphology 95:260–273CrossRefGoogle Scholar
  23. Guthrie RH, Evans SG (2004a) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landf 26:1321–1339. doi:10.1002/esp.1095 CrossRefGoogle Scholar
  24. Guthrie RH, Evans SG (2004b) Magnitude frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Nat Hazards Earth Syst Sci 4:475–483CrossRefGoogle Scholar
  25. Guthrie RH, Deadman PJ, Cabrera AR, Evans SG (2008) Exploring the magnitude–frequency distribution: a cellular automata model for landslides. Landslides 5:151–159. doi:10.1007/s10346-007-0104-1 CrossRefGoogle Scholar
  26. Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195:169–183. doi:10.1016/S0012-821X(01)00589-1 CrossRefGoogle Scholar
  27. Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229. doi:10.1016/j.epsl.2009.01.005 CrossRefGoogle Scholar
  28. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi:10.1016/j.earscirev.2012.02.001 CrossRefGoogle Scholar
  29. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. doi:10.1029/95RG03287 CrossRefGoogle Scholar
  30. Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374. doi:10.1007/s11069-013-0681-3 CrossRefGoogle Scholar
  31. Heidarzadeh M, Fu L, Gross F, Chiocci FL, Ridente D, Krastel S (2014) A new possible tectonic source for the Messina tsunami of 1908? EGU Gen Assem Conf Abstr 16:14495Google Scholar
  32. Hu G, Yan T, Liu Z, Vanneste M, Dong L (2009) Size distribution of submarine landslides along the middle continental slope of the East China Sea. J Ocean Univ China 8:322–326. doi:10.1007/S11802-009-0322-3 CrossRefGoogle Scholar
  33. Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238. doi:10.1139/t98-106 CrossRefGoogle Scholar
  34. Ioualalen M, Migeon S, Sardoux O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. J Geophys Res 181(2):724–740. doi:10.1111/j.1365-246X.2010.04572.x Google Scholar
  35. Issler D, De Blasio FV, Elverhøi A, Bryn P, Lien R (2005) Scaling behaviour of clay-rich submarine debris flows. Mar Pet Geol 22:187–194. doi:10.1016/j.marpetgeo.2004.10.015 CrossRefGoogle Scholar
  36. Klar A, Aharonov E, Kalderon-Asael B, Katz O (2011) Analytical and observational relations between landslide volume and surface area. J Geophys Res 116:F02001. doi:10.1029/2009JF001604 CrossRefGoogle Scholar
  37. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach R (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711CrossRefGoogle Scholar
  38. Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245. doi:10.1029/TC005i002p00227 CrossRefGoogle Scholar
  39. Micallef A, Berndt C, Masson DG, Stow DAV (2008) Scale invariant characteristics of the Storegga slide and implications for large-scale submarine mass movements. Mar Geol 247:46–60. doi:10.1016/j.margeo.2007.08.003 CrossRefGoogle Scholar
  40. Monaco C, Tortorici L (2000) Active faulting in the Calabrian Arc and eastern Sicily. J Geodyn 29:407–424CrossRefGoogle Scholar
  41. Moscardelli L, Wood L (2016) Morphometry of mass-transport deposits as a predictive tool. GSA Bull 128:47–80. doi:10.1130/B31221.1 Google Scholar
  42. Stark CP, Guzzetti F (2009) Landslide rupture and the probability distribution of mobilized debris volumes. J Geophys Res 114:F00A02. doi:10.1029/2008JF001008 CrossRefGoogle Scholar
  43. Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28:1091–1094. doi:10.1029/2000GL008527 CrossRefGoogle Scholar
  44. ten Brink US, Geist EL, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33:L11307. doi:10.1029/2006GL026125 CrossRefGoogle Scholar
  45. ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009) Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett 287:31–42. doi:10.1016/j.epsl.2009.07.031 CrossRefGoogle Scholar
  46. Tinti S, Armigliato A, Manucci A, Pagnoni G, Zaniboni F, Yalçiner AC, Altinok Y (2006) The generating mechanisms of the August 17, 1999 Izmit bay (Turkey) tsunami: regional (tectonic) and local (mass instabilities) causes. Mar Geol 225:311–330. doi:10.1016/j.margeo.2005.09.010 CrossRefGoogle Scholar
  47. Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res Earth Surf 118:2600–2618. doi:10.1002/2013JF002720 CrossRefGoogle Scholar
  49. Valensise G, Pantosti D (1992) A 125 Kyr-long geological record of seismic source repeatability: the Messina Straits (southern Italy) and the 1908 earthquake (Ms 7/2). Terra Nov. 4:472–483. doi:10.1111/j.1365-3121.1992.tb00583.x
  50. Völker DJ (2010) A simple and efficient GIS tool for volume calculations of submarine landslides. Geo-Mar Lett 30:541–547. doi:10.1007/s00367-009-0176-0 CrossRefGoogle Scholar
  51. Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333. doi:10.2307/1912557 CrossRefGoogle Scholar
  52. Zaniboni F, Armigliato A, Pagnoni G, Tinti S (2014) Continental margins as a source of tsunami hazard: the 1977 Gioia Tauro (Italy) landslide–tsunami investigated through numerical modeling. Mar Geol 357:210–217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Geological Survey of Spain (IGME)MadridSpain
  2. 2.Sapienza University of RomeRomeItaly
  3. 3.Institute of Environmental Geology and Geo-engineering – NRCRomeItaly
  4. 4.Institute of Marine Sciences-CSICBarcelonaSpain
  5. 5.Spanish Institute of Oceanography, O.C. MálagaFuengirolaSpain

Personalised recommendations