Geo-Marine Letters

, Volume 36, Issue 5, pp 379–393 | Cite as

Characterising natural bedform morphology and its influence on flow

  • Alice LefebvreEmail author
  • Andries J. Paarlberg
  • Christian Winter


Bedforms such as dunes and ripples are ubiquitous in rivers and coastal seas, and commonly described as triangular shapes from which height and length are calculated to estimate hydrodynamic and sediment dynamic parameters. Natural bedforms, however, present a far more complicated morphology; the difference between natural bedform shape and the often assumed triangular shape is usually neglected, and how this may affect the flow is unknown. This study investigates the shapes of natural bedforms and how they influence flow and shear stress, based on four datasets extracted from earlier studies on two rivers (the Rio Paraná in Argentina, and the Lower Rhine in The Netherlands). The most commonly occurring morphological elements are a sinusoidal stoss side made of one segment and a lee side made of two segments, a gently sloping upper lee side and a relatively steep (6 to 21°) slip face. A non-hydrostatic numerical model, set up using Delft3D, served to simulate the flow over fixed bedforms with various morphologies derived from the identified morphological elements. Both shear stress and turbulence increase with increasing slip face angle and are only marginally affected by the dimensions and positions of the upper and lower lee side. The average slip face angle determined from the bed profiles is 14°, over which there is no permanent flow separation. Shear stress and turbulence above natural bedforms are higher than above a flat bed but much lower than over the often assumed 30° lee side angle.


Turbulent Kinetic Energy Flow Separation Bedforms Total Shear Stress Slip Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded through the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System”. Alice Lefebvre is appreciative of the support provided by GLOMAR – Bremen International Graduate School for Marine Sciences. The authors wish to thank Roy M. Frings and Daniel R. Parsons for providing the multibeam echosounder data used in the analysis. Eva Kwoll is also thanked for giving helpful suggestions on the structure of the discussion. Three reviewers are acknowledged for comments on an earlier version of the article, as well as the journal editors for other suggestions. Data are available through the Publishing Network for Geoscientific & Environmental Data (PANGAEA,

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Allen JRL (1982) Sedimentary structures: their character and physical basis. Elsevier, New YorkGoogle Scholar
  2. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Res 60:160–172. doi: 10.2110/JSR.60.160 CrossRefGoogle Scholar
  3. Barnard PL, Erikson LH, Kvitek RG (2011) Small-scale sediment transport patterns and bedform morphodynamics: new insights from high-resolution multibeam bathymetry. Geo-Mar Lett 31:227–236. doi: 10.1007/s00367-011-0227-1 CrossRefGoogle Scholar
  4. Bennett SJ, Best JL (1995) Mean flow and turbulence structure over fixed, two-dimensional dunes: implications for sediment transport and bedform stability. Sedimentology 42:491–513. doi: 10.1111/j.1365-3091.1995.tb00386.x CrossRefGoogle Scholar
  5. Best J (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res Earth Surf 110:F04S02. doi: 10.1029/2004JF000218 CrossRefGoogle Scholar
  6. Best J, Kostaschuk R (2002) An experimental study of turbulent flow over a low-angle dune. J Geophys Res Oceans 107:3135. doi: 10.1029/2000JC000294 CrossRefGoogle Scholar
  7. Best J, Simmons S, Parsons D, Oberg K, Czuba J, Malzone C (2010) A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES). Geophys Res Lett 37, L06405. doi: 10.1029/2009GL041852 CrossRefGoogle Scholar
  8. Bradley RW, Venditti JG, Kostaschuk R, Church MA, Hendershot M, Allison MA (2013) Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada. J Geophys Res 118:1693–1709. doi: 10.1002/jgrf.20118 CrossRefGoogle Scholar
  9. Carling PA (1996) Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology 43:647–664. doi: 10.1111/j.1365-3091.1996.tb02184.x CrossRefGoogle Scholar
  10. Carling PA, Golz E, Orr HG, Radecki-Pawlik A (2000) The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology 47:227–252. doi: 10.1046/j.1365-3091.2000.00290.x CrossRefGoogle Scholar
  11. Deltares (2011) User manual Delft3D-FLOW. Deltares, Delft, The NetherlandsGoogle Scholar
  12. Engel P (1981) Length of flow separation over dunes. J Hydraul Div 107:1133–1143Google Scholar
  13. Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholomae A, Flemming BW, Bartholdy J (2005) Development of subaqueous barchanoid-shaped dunes due to lateral grain size variability in a tidal inlet channel of the Danish Wadden Sea. J Geophys Res Earth Surf 110:F04S08. doi: 10.1029/2004JF000180 CrossRefGoogle Scholar
  14. Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholomä A, Flemming BW, Bartholdy J (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Mar Lett 26:151–163. doi: 10.1007/s00367-006-0026-2 CrossRefGoogle Scholar
  15. Fernandez R, Best J, López F (2006) Mean flow, turbulence structure, and bed form superimposition across the ripple-dune transition. Water Resour Res 42, W05406. doi: 10.1029/2005WR004330 CrossRefGoogle Scholar
  16. Flemming BW (1988) On the classification of subaquatic flow-transverse bedforms (in German). Bochum Geol Geotech Arb 29:44–47Google Scholar
  17. Frings RM (2007) From gravel to sand. Downstream fining of bed sediments in the lower river Rhine. PhD thesis, Utrecht University. Netherlands Geographical Studies 368, Royal Dutch Geographical Society, Utrecht, The NetherlandsGoogle Scholar
  18. Harbor DJ (1998) Dynamics of bedforms in the lower Mississippi River. J Sediment Res 68:750–762. doi: 10.2110/jsr.68.750 CrossRefGoogle Scholar
  19. Holmes RR Jr, Garcia MH (2008) Flow over bedforms in a large sand-bed river: a field investigation. J Hydraul Res 46:322–333. doi: 10.3826/jhr.2008.3040 CrossRefGoogle Scholar
  20. Kornman BA (1995) The effect of changes in the lee shape of dunes on the flow field, turbulence, and hydraulic roughness. Report R 95-1, University of Utrecht, Utrecht, The NetherlandsGoogle Scholar
  21. Kostaschuk R (2000) A field study of turbulence and sediment dynamics over subaqueous dunes with flow separation. Sedimentology 47:519–531. doi: 10.1046/j.1365-3091.2000.00303.x CrossRefGoogle Scholar
  22. Kostaschuk R, Villard P (1996) Flow and sediment transport over large subaqueous dunes: Fraser River, Canada. Sedimentology 43:849–863. doi: 10.1111/j.1365-3091.1996.tb01506.x CrossRefGoogle Scholar
  23. Kostaschuk R, Shugar D, Best J, Parsons D, Lane S, Hardy R, Orfeo O (2009) Suspended sediment transport and deposition over a dune: Río Paraná, Argentina. Earth Surf Process Landf 34:1605–1611. doi: 10.1002/esp.1847 CrossRefGoogle Scholar
  24. Kwoll E, Becker M, Winter C (2014) With or against the tide: the influence of bedform asymmetry on the formation of macroturbulence and suspended sediment patterns. Water Resour Res 50:7800–7815. doi: 10.1002/2013WR014292 CrossRefGoogle Scholar
  25. Kwoll E, Venditti JG, Bradley RW, Winter C (2016) Flow structure and resistance over subaquaeous high- and low-angle dunes. J Geophys Res Earth Surf 121:545–564. doi: 10.1002/2015JF003637 CrossRefGoogle Scholar
  26. Lefebvre A, Winter C (2016) Predicting bed form roughness: the influence of lee side angle. Geo-Mar Lett 36:121–133. doi: 10.1007/s00367-016-0436-8 CrossRefGoogle Scholar
  27. Lefebvre A, Paarlberg AJ, Winter C (2014a) Flow separation and shear stress over angle of repose bedforms: a numerical investigation. Water Resour Res 50:986–1005. doi: 10.1002/2013WR014587 CrossRefGoogle Scholar
  28. Lefebvre A, Paarlberg AJ, Ernstsen VB, Winter C (2014b) Flow separation and roughness lengths over large bedforms in a tidal environment: a numerical investigation. Cont Shelf Res 91:57–69. doi: 10.1016/j.csr.2014.09.001 CrossRefGoogle Scholar
  29. McLean SR, Nelson JM, Wolfe SR (1994) Turbulence structure over two-dimensional bed forms: implications for sediment transport. J Geophys Res 99:12729–12747. doi: 10.1029/94JC00571 CrossRefGoogle Scholar
  30. McLean SR, Wolfe SR, Nelson JM (1999) Spatially averaged flow over a wavy boundary revisited. J Geophys Res 104:15743–15753. doi: 10.1029/1999JC900116 CrossRefGoogle Scholar
  31. Naqshband S, Ribberink J, Hulscher S (2014) Using both free surface effect and sediment transport mode parameters in defining the morphology of river dunes and their evolution to upper stage plane beds. J Hydraul Eng 140:06014010. doi: 10.1061/(ASCE)HY.1943-7900.0000873 CrossRefGoogle Scholar
  32. Nelson JM, McLean SR, Wolfe SR (1993) Mean flow and turbulence fields over two-dimensional bed forms. Water Resour Res 29:3935–3953. doi: 10.1029/93WR01932 CrossRefGoogle Scholar
  33. Ogink H (1989) Hydraulic roughness of single and compound bed forms. Part XI. Report on model investigations. Delft Hydraulics Laboratory, Delft, The NetherlandsGoogle Scholar
  34. Omidyeganeh M, Piomelli U (2011) Large-eddy simulation of two-dimensional dunes in a steady, unidirectional flow. J Turbul 12:1–31. doi: 10.1080/14685248.2011.609820 CrossRefGoogle Scholar
  35. Paarlberg AJ, Dohmen-Janssen CM, Hulscher SJMH, Termes P (2007) A parameterization of flow separation over subaqueous dunes. Water Resour Res 43, W12417. doi: 10.1029/2006WR005425 CrossRefGoogle Scholar
  36. Parsons DR, Best JL, Orfeo O, Hardy RJ, Kostaschuk R, Lane SN (2005) Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J Geophys Res 110:F04S03. doi: 10.1029/2004JF000231 CrossRefGoogle Scholar
  37. Peakall J, Ashworth PJ, Best JL (1996) Physical modelling in fluvial geomorphology: principles, applications and unresolved issues. In: Rhoads BL, Thorne CE (eds) The scientific nature of geomorphology. Wiley, New York, pp 221–253Google Scholar
  38. Piomelli U, Omidyeganeh M (2013) Large-eddy simulations in dune-dynamics research. In: Van Lancker V, Garlan T (eds) MARID 2013 4th Int Conf Marine and River Dune Dynamics, Bruges, Belgium. VLIZ Spec Publ 65, pp 15–22Google Scholar
  39. Roden JE (1998) The sedimentology and dynamics of mega-dunes, Jamuna River, Bangladesh. PhD thesis, University of Leeds, Leeds, UKGoogle Scholar
  40. Schindler RJ, Parsons DR, Ye L, Hope JA, Baas JH, Peakall J, Manning AJ, Aspden RJ, Malarkey J, Simmons S, Paterson DM, Lichtman ID, Davies AG, Thorne PD, Bass SJ (2015) Sticky stuff: redefining bedform prediction in modern and ancient environments. Geology 43:399–402. doi: 10.1130/G36262.1 CrossRefGoogle Scholar
  41. Smith JD, McLean SR (1977) Spatially averaged flow over a wavy surface. J Geophys Res 84:1735–1746. doi: 10.1029/JC082i012p01735 CrossRefGoogle Scholar
  42. Stoesser T, Braun C, García-Villalba M, Rodi W (2008) Turbulence structures in flow over two-dimensional dunes. J Hydraul Eng 134:42–55. doi: 10.1061/(ASCE)0733-9429(2008)134:1(42) CrossRefGoogle Scholar
  43. Uittenbogaard R, van Kester J, Stelling G (1992) Implementation of three turbulence models in 3D-TRISULA for rectangular grids. Tech Rep Z81, WL. Delft Hydraulics, Delft, The NetherlandsGoogle Scholar
  44. Van der Mark CF, Blom A (2007) A new and widely applicable tool for determining the geometric properties of bedforms. University of Twente, EnschedeGoogle Scholar
  45. Van der Mark CF, Blom A, Hulsher SJMH (2008) Quantification of variability in bedform geometry. J Geophys Res 113, F03020. doi: 10.1029/2007JF000940 Google Scholar
  46. Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, AmsterdamGoogle Scholar
  47. Venditti JG (2003) Initiation and development of sand dunes in river channels. PhD thesis, University of British Columbia, Vancouver, CanadaGoogle Scholar
  48. Venditti JG (2007) Turbulent flow and drag over fixed two- and three-dimensional dunes. J Geophys Res 112, F04008. doi: 10.1029/2006JF000650 CrossRefGoogle Scholar
  49. Venditti JG (2013) Bedforms in sand-bedded rivers. In: Shroder J, Wohl E (eds) Treatise on geomorphology. Academic Press, San Diego, pp 137–162. doi: 10.1016/B978-0-12-374739-6.00235-9 CrossRefGoogle Scholar
  50. Venditti JG, Bennett SJ (2000) Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. J Geophys Res 105:22035–22047. doi: 10.1029/2000JC900094 CrossRefGoogle Scholar
  51. Villard P, Kostaschuk R (1998) The relation between shear velocity and suspended sediment concentration over dunes: Fraser Estuary, Canada. Mar Geol 148:71–81. doi: 10.1016/S0025-3227(98)00015-2 CrossRefGoogle Scholar
  52. Wilbers AWE, Ten Brinke WBM (2003) The response of subaqueous dunes to floods in sand and gravel bed reaches of the Dutch Rhine. Sedimentology 50:1013–1034. doi: 10.1046/j.1365-3091.2003.00585.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alice Lefebvre
    • 1
    Email author
  • Andries J. Paarlberg
    • 2
  • Christian Winter
    • 1
  1. 1.MARUM – Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.HKV ConsultantsLelystadThe Netherlands

Personalised recommendations