Advertisement

Geo-Marine Letters

, Volume 36, Issue 5, pp 339–352 | Cite as

Expelled subsalt fluids form a pockmark field in the eastern Red Sea

  • P. Feldens
  • M. Schmidt
  • I. Mücke
  • N. Augustin
  • R. Al-Farawati
  • M. Orif
  • E. Faber
Original

Abstract

This study aimed to constrain the source area of fluids responsible for the formation of a pockmark field in the eastern Red Sea. The newly discovered field extends over an area of at least 1,000 km2 at a water depth of ~400 m. The pockmarks have modal diameters of 140–150 m and are either randomly distributed on the seafloor or aligned within valleys approximately 25 m deep and several kilometres in length. Seismic data show that chimneys and/or regions of acoustic turbidity prevail beneath the pockmark field down to the top of Miocene evaporites, which are widespread in the Red Sea. Four gravity cores were taken from the pockmark field. For most of the cores, geochemical analyses show that porewater has a higher Cl concentration than the local seawater and increased Cl/Br ratios, which indicate an origin from evaporites. The adsorbed hydrocarbons are of thermal origin, with C1/(C2+C3) ratios between 4 and 23 and stable carbon isotope data for methane varying from δ13C of –34 to –36.4‰ with respect to Vienna Pee Dee Belemnite. On the basis of the calculated maturity of the source rock of 1.2–1.4 Ro, local thermal gradients and sedimentation rates, its deeper depth boundary is approximated at 2,000 to 2,200 m. The results indicate that the adsorbed hydrocarbons sampled at the seafloor had to pass through an evaporite sequence of potentially several hundred metres to a few km in thickness. The most likely explanation for the increased permeability of the evaporite sequence is brittle deformation triggered by extensive local tectonic movements and supported by high fluid overpressure within the evaporite sequence.

Keywords

Source Rock Evaporite Brittle Deformation Bromide Concentration Evaporite Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The efforts of the captains and crews of the research vessels Poseidon and Pelagia during our surveys is much appreciated. We wish to thank Neil Mitchell, Najeeb Rasul, Ian Stewart, the editors and reviewers for helpful comments. This work is the result of the Jeddah Transect Project, a collaboration between King Abdulaziz University and GEOMAR Helmholtz Center for Ocean Research that was funded by King Abdulaziz University (KAU) Jeddah, Saudi Arabia, under grant no. T-065/430. The authors acknowledge with thanks KAU technical and financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

References

  1. Abrams MA (1996) Interpretation of methane carbon isotopes extracted from surficial marine sediments for detection of subsurface hydrocarbons. In: Hydrocarbon migration and its near-surface expression. AAPG Memoir no 66, pp 309–318Google Scholar
  2. Abrams M (2013) Best practices for the collection, analysis, and interpretation of seabed geochemical samples to evaluate subsurface hydrocarbon generation and entrapment. Offshore Technol Conf Proc 4:3109–3129. doi: 10.4043/24219-MS Google Scholar
  3. Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan RA, Kwasnitschka T (2014) The rifting to spreading transition in the Red Sea. Earth Planet Sci Lett 395:217–230. doi: 10.1016/j.epsl.2014.03.047 CrossRefGoogle Scholar
  4. Barnard PC, Thompson S, Bastow MA, Ducreux C, Mathurin G (1992) Thermal maturity development and source-rock occurrence in the Red-Sea and Gulf of Aden. J Pet Geol 15:173–186. doi: 10.1111/j.1747-5457.1992.tb00961.x CrossRefGoogle Scholar
  5. Batang ZB, Papathanassiou E, Al-Suwailem A, Smith C, Salomidi M, Petihakis G, Alikunhi NM, Smith L, Mallon F, Yapici T, Fayad N (2012) First discovery of a cold seep on the continental margin of the central Red Sea. J Mar Syst 94:247–253. doi: 10.1016/j.jmarsys.2011.12.004 CrossRefGoogle Scholar
  6. Bernard BB, Brooks JM, Sackett WM (1978) Light hydrocarbons in recent Texas continental shelf and slope sediments. J Geophys Res 83:4053. doi: 10.1029/JC083iC08p04053 CrossRefGoogle Scholar
  7. Berndt C (2005) Focused fluid flow in passive continental margins. Philos Trans R Soc A Math Phys Eng Sci 363:2855–2871. doi: 10.1098/rsta.2005.1666 CrossRefGoogle Scholar
  8. Beydoun ZR, Sikander AH (1992) The Red-Sea Gulf of Aden - reassessment of hydrocarbon potential. Mar Pet Geol 9:474–485CrossRefGoogle Scholar
  9. Biton E, Hildor H, Peltier WR (2008) Red Sea during the Last Glacial Maximum: implications for sea level reconstruction. Paleoceanography 23, PA1214. doi: 10.1029/2007PA001431 CrossRefGoogle Scholar
  10. Bosworth W (2015) Geological evolution of the Red Sea: historical background, review, and synthesis. In: Rasul N, Stewart I (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Heidelberg, pp 45–78Google Scholar
  11. Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden Basins. J Afr Earth Sci 43:334–378. doi: 10.1016/j.jafrearsci.2005.07.020 CrossRefGoogle Scholar
  12. Bussmann I, Suess E (1998) Groundwater seepage in Eckernförde Bay (Western Baltic Sea): effect on methane and salinity distribution of the water column. Cont Shelf Res 18:1795–1806. doi: 10.1016/S0278-4343(98)00058-2 CrossRefGoogle Scholar
  13. Caress D, Chayes D (1995) New software for processing sidescan data from sidescan-capable multibeam sonars. Proc IEEE Ocean 95 Conf, pp 997–1000Google Scholar
  14. Cathles LM, Su Z, Chen D (2010) The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar Pet Geol 27:82–91. doi: 10.1016/j.marpetgeo.2009.09.010 CrossRefGoogle Scholar
  15. Chand S, Rise L, Ottesen D, Dolan MFJ, Bellec V, Bøe R (2009) Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea: morphology and genesis. Mar Pet Geol 26:1035–1042. doi: 10.1016/j.marpetgeo.2008.09.002 CrossRefGoogle Scholar
  16. Cole GA, Abu-Ali MA, Coiling EL, Halpern HI, Carrigan WJ, Savage GR, Scolaro RJ, AI-Sharidi SH (1995) Petroleum geochemistry of the Midyan and Jaizan basins of the Red Sea, Saudi Arabia. Mar Pet Geol 12:597–614. doi: 10.1016/0264-8172(95)98087-L CrossRefGoogle Scholar
  17. Crutchley GJ, Pecher IA, Gorman AR, Henrys SA, Greinert J (2010) Seismic imaging of gas conduits beneath seafloor seep sites in a shallow marine gas hydrate province, Hikurangi Margin, New Zealand. Mar Geol 272:114–126. doi: 10.1016/j.margeo.2009.03.007 CrossRefGoogle Scholar
  18. Davison I (2009) Faulting and fluid flow through salt. J Geol Soc Lond 166:205–216. doi: 10.1144/0016-76492008-064 CrossRefGoogle Scholar
  19. Davison I, Alsop I, Blundell D (1996) Salt tectonics: some aspects of deformation mechanics. Geol Soc Lond Spec Publ 100:1–10. doi: 10.1144/GSL.SP.1996.100.01.01 CrossRefGoogle Scholar
  20. Faber E, Stahl W (1983) Analytical procedure and results of an isotopic geochemical surface survey in an area of the British North Sea. In: Brooks J (ed) Petroleum geochemistry and exploration in Europe. Geological. Blackwell, London, pp 51–63Google Scholar
  21. Faber E, Schmidt M, Feyzullayev A (2015) Light hydrocarbons in recent Texas continental shelf and slope sediments. Oil Gas Eur Mag 41:93–98Google Scholar
  22. Feinstein S, Kohn BP, Steckler MS, Eyal M (1996) Thermal history of the eastern margin of the Gulf of Suez, I. Reconstruction from borehole temperature and organic maturity measurements. Tectonophysics 266:203–220. doi: 10.1016/S0040-1951(96)00190-4 CrossRefGoogle Scholar
  23. Feldens P, Mitchell N (2015) Salt flows in the Central Red Sea. In: Rasul N, Stewart I (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Heidelberg, pp 205–218Google Scholar
  24. Fleischer P, Orsi T, Richardson MD, Anderson A (2001) Distribution of free gas in marine sediments: a global overview. Geo-Mar Lett 21:103–122. doi: 10.1007/s003670100072 CrossRefGoogle Scholar
  25. Floodgate GD, Judd AG (1992) The origins of shallow gas. Cont Shelf Res 12:1145–1156. doi: 10.1016/0278-4343(92)90075-U CrossRefGoogle Scholar
  26. Forwick M, Baeten N, Vorren T (2009) Pockmarks in Spitsbergen fjords. Nor J Geol 89:65–77Google Scholar
  27. Friedman I, Hardcastle K (1974) Deuterium in interstitial waters from Red Sea Cores. In: Initial reports of the deep sea drilling project, 23. US Government Printing Office, pp 969–970. doi: 10.2973/dsdp.proc.23.136.1974
  28. Gay A, Lopez M, Berndt C, Séranne M (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar Geol 244:68–92. doi: 10.1016/j.margeo.2007.06.003 CrossRefGoogle Scholar
  29. Gay A, Mourgues R, Berndt C, Bureau D, Planke S, Laurent D, Gautier S, Lauer C, Loggia D (2012) Anatomy of a fluid pipe in the Norway Basin: initiation, propagation and 3D shape. Mar Geol 332–334:75–88. doi: 10.1016/j.margeo.2012.08.010 CrossRefGoogle Scholar
  30. Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J Int 51:245–251CrossRefGoogle Scholar
  31. Girdler RW, Whitmarsh RB (1974) Miocene evaporites in Red Sea cores, their relevance to the problem of the width and age of oceanic crust beneath the Red Sea. In: Initial reports of the deep sea drilling project, 23. US Government Printing Office, Washington, pp 13–921. doi: 10.2973/dsdp.proc.23.128.1974 Google Scholar
  32. Grunau HR (1987) A worldwide look at the cap-rock problem. J Pet Geol 10:245–265. doi: 10.1111/j.1747-5457.1987.tb00945.x CrossRefGoogle Scholar
  33. Hart BS, Hamilton TS (1993) High-resolution acoustic mapping of shallow gas in unconsolidated sediments beneath the strait of Georgia, British Columbia. Geo-Mar Lett 13:49–55. doi: 10.1007/BF01204392 CrossRefGoogle Scholar
  34. Holness MB (1997) The structure of the halite-brine interface inferred from pressure and temperature variations of equilibrium dihedral angles in the halite-H2O-CO2 system. Geochim Cosmochim Acta 61:795–804CrossRefGoogle Scholar
  35. Hovland M, Rueslatten H, Johnsen H (2015) Red Sea salt formations – a result of hydrothermal processes. In: Rasul N, Stewart I (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Heidelberg, pp 187–203Google Scholar
  36. Judd AG (2003) The global importance and context of methane escape from the seabed. Geo-Mar Lett 23:147–154. doi: 10.1007/s00367-003-0136-z CrossRefGoogle Scholar
  37. Judd AG, Hovland M (2009) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, CambridgeGoogle Scholar
  38. Karstens J, Berndt C (2015) Seismic chimneys in the Southern Viking Graben – implications for palaeo fluid migration and overpressure evolution. Earth Planet Sci Lett 412:88–100. doi: 10.1016/j.epsl.2014.12.017 CrossRefGoogle Scholar
  39. King L, MacLean B (1970) Pockmarks on the Scotian Shelf. Geol Soc Am Bull 81:3141–3148CrossRefGoogle Scholar
  40. Lawrence JR (1974) Stable oxygen and carbon isotopes variations in the pore waters, carbonates and silicates, sites 225 and 228, Red Sea. In: Initial reports of the deep sea drilling project, 23. US Government Printing Office, pp 939–942. doi: 10.2973/dsdp.proc.23.130.1974
  41. Lazar M, Lang G, Schattner U (2016) Coincidence or not? Interconnected gas/fluid migration and ocean–atmosphere oscillations in the Levant Basin. Geo-Mar Lett 36. doi: 10.1007/s00367-016-0447-5
  42. León R, Somoza L, Medialdea T, González FJ, Gimenez-Moreno CJ, Pérez-López R (2014) Pockmarks on either side of the Strait of Gibraltar: formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand? Geo-Mar Lett 34:131–151. doi: 10.1007/s00367-014-0358-2 CrossRefGoogle Scholar
  43. Lewis S, Holness M (1996) Equilibrium halite-H2O dihedral angles: high rock-salt permeability in the shallow crust? Geology 24:431–434CrossRefGoogle Scholar
  44. Llewellyn GT (2014) Evidence and mechanisms for Appalachian Basin brine migration into shallow aquifers in NE Pennsylvania, USA. Hydrogeol J 22:1055–1066. doi: 10.1007/s10040-014-1125-1 CrossRefGoogle Scholar
  45. Magri F, Littke R, Rodon S, Bayer U, Urai J (2008) Temperature fields, petroleum maturation and fluid flow in the vicinity of salt domes. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex sedimentary basins. The example of the central European basin system. Springer, Berlin, pp 277–290Google Scholar
  46. Makris J, Tsironidis J, Richter H (1991) Heatflow density distribution in the Red Sea. Tectonophysics 198:383–393CrossRefGoogle Scholar
  47. Manheim FT, Waternamn LS, Woo CC, Sayles FL (1974) Interstitial water studies on small core samples, leg 23 (Red Sea). In: Initial reports of the deep sea drilling project, 23. US Government Printing Office, pp 955–967. doi: 10.2973/dsdp.proc.23.135.1974
  48. Mertineit M, Behlau J, Hammer J, Schramm M, Zulauf G (2012) Mechanical behavior of anhydrite rocks: results of field investigations, mineralogical-geochemical studies and thermomechanical experiments. In: Mechanical behaviour of salt, VII. Taylor & Francis, London, pp 123–129Google Scholar
  49. Michaelis W, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban deeps. Appl Geochem 5:103–114. doi: 10.1016/0883-2927(90)90041-3 CrossRefGoogle Scholar
  50. Mitchell D, Allen R, Salama W, Abouzakm A (1992) Tectonostratigraphic framework and hydrocarbon potential of the Red Sea. J Pet Geol 15:187–210CrossRefGoogle Scholar
  51. Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122:701–713. doi: 10.1130/B26518.1 CrossRefGoogle Scholar
  52. Mitchell NC, Schmidt M, Ligi M (2011) Comment on “Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea” by Pierret et al. (2010). J Geochem Explor 108:112–113. doi: 10.1016/j.gexplo.2010.09.014 CrossRefGoogle Scholar
  53. Mitchell NC, Ligi M, Feldens P, Hübscher C (2015a) Deformation of a young salt giant: regional topography of the Red Sea Miocene evaporites. Basin Res. doi: 10.1111/bre.12153 Google Scholar
  54. Mitchell NC, Ligi M, Rohling EJ (2015b) Red Sea isolation history suggested by Plio-Pleistocene seismic reflection sequences. Earth Planet Sci Lett 430:387–397. doi: 10.1016/j.epsl.2015.08.037 CrossRefGoogle Scholar
  55. Montgomery DR, Gillespie A (2005) Formation of Martian outflow channels by catastrophic dewatering of evaporite deposits. Geology 33:625–628. doi: 10.1130/G21270.1 CrossRefGoogle Scholar
  56. Orsi T, Werner F, Milkert D (1996) Environmental overview of Eckernförde Bay, northern Germany. Geo-Mar Lett 16:140–147CrossRefGoogle Scholar
  57. Orszag-Sperber F, Harwood G, Kendall A, Purser B (1998) A review of the evaporites of the Red Sea-Gulf of Suez rift. In: Purser B, Bosence D (eds) Sedimentation and tectonics in rift basins. Red Sea - Gulf of Aden. Springer, Berlin, pp 409–426CrossRefGoogle Scholar
  58. Pennino V, Sulli A, Caracausi A, Grassa F, Interbartolo F (2014) Fluid escape structures in the north Sicily continental margin. Mar Pet Geol 55:202–213. doi: 10.1016/j.marpetgeo.2014.02.007 CrossRefGoogle Scholar
  59. Pinet N, Duchesne M, Lavoie D, Bolduc A, Long B (2008) Surface and subsurface signatures of gas seepage in the St. Lawrence Estuary (Canada): significance to hydrocarbon exploration. Mar Pet Geol 25:271–288. doi: 10.1016/j.marpetgeo.2007.07.011 CrossRefGoogle Scholar
  60. Popp T, Kern H, Schulze O (2001) Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. J Geophys Res 106:4061. doi: 10.1029/2000JB900381 CrossRefGoogle Scholar
  61. Presley B, Sims R, Feagley S (1974) Interstitial water chemistry DSDP Leg 23. In: Initial reports of the deep sea drilling project, 23. US Government Printing Office, WashingtonGoogle Scholar
  62. Rao P, Madhavi T, Srinu D, Kalpana M, Patil D, Dayal A (2013) Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch–Saurashtra: implication for hydrocarbon prospects. J Earth Syst Sci 122:55–63CrossRefGoogle Scholar
  63. Rasul N, Stewart I, Nawab Z (2015) Introduction to the Red Sea: its origin, structure and environment. In: Rasul N, Stewart I (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Heidelberg, pp 1–28Google Scholar
  64. Ross DA, Schlee J (1973) Shallow structure and geologic development of the southern Red Sea. Geol Soc Am Bull 84:3827. doi: 10.1130/0016-7606(1973)84<3827:SSAGDO>2.0.CO;2 CrossRefGoogle Scholar
  65. Schenk C, Charpentier R, Klett T, Brownfield M, Kirschbaum M, Pitman J, Cook T, Tennyson M (2010) Assessment of undiscovered oil and gas resources of the Red Sea Basin Province. US Geol Surv Fact Sheet 2010-3119Google Scholar
  66. Schléder Z, Urai JL, Nollet S, Hilgers C (2008) Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). Int J Earth Sci 97:1045–1056. doi: 10.1007/s00531-007-0275-y CrossRefGoogle Scholar
  67. Schmidt M, Hensen C, Mörz T, Müller C, Grevemeyer I, Wallmann K, Mau S, Kaul N (2005) Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc. Mar Geol 216:83–100. doi: 10.1016/j.margeo.2005.01.001 CrossRefGoogle Scholar
  68. Schmidt M, Al-Farawati R, Al-Aidaroos A, Kürten B (2013) RV PELAGIA Fahrtbericht / Cruise Report 64PE350/64PE351 – JEDDAH-TRANSECT; 08.03. - 05.04.2012 Jeddah - Jeddah, 06.04 - 22.04.2012 Jeddah - Duba. GEOMAR, KielGoogle Scholar
  69. Schmidt M, Al-Farawati R, Botz R (2015) Geochemical classification of brine-filled Red Sea deeps. In: Rasul N, Stewart I (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Heidelberg, pp 219–233Google Scholar
  70. Schmitt M, Thießen O (2003) A new designed sediment degassing system for small sample sizes to analyse free-, total-, and adsorbed gases. In: 7th Int Conf Gas Geochemistry (ICGG7), Freiberg/SachsenGoogle Scholar
  71. Schoenherr J, Urai JL, Kukla PA, Littke R, Schléder Z, Larroque J-M, Newall MJ, Al-Abry N, Al-Siyabi HA, Rawahi Z (2007) Limits to the sealing capacity of rock salt: a case study of the infra-Cambrian Ara Salt from the South Oman salt basin. Am Assoc Pet Geol Bull 91:1541–1557. doi: 10.1306/06200706122 Google Scholar
  72. Schroot BM, Klaver GT, Schüttenhelm RTE (2005) Surface and subsurface expressions of gas seepage to the seabed—examples from the Southern North Sea. Mar Pet Geol 22:499–515. doi: 10.1016/j.marpetgeo.2004.08.007 CrossRefGoogle Scholar
  73. Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods 3:361–371CrossRefGoogle Scholar
  74. Shishkina C (1978) Distribution of bromine, Cl/Br relationships and iodine in interstitial water of the Black Sea. DSDP Proc 42(2):631–635Google Scholar
  75. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmeizer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858CrossRefGoogle Scholar
  76. Simoneit BR, Grimalt JO, Hayes JM, Hartman H (1987) Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea. Geochim Cosmochim Acta 51:879–894CrossRefGoogle Scholar
  77. Smith DB (1996) Deformation in the late Permian Boulby Halite (EZ3Na) in Teesside, NE England. Geol Soc Lond Spec Publ 100:77–87. doi: 10.1144/GSL.SP.1996.100.01.07 CrossRefGoogle Scholar
  78. Stewart SA (1999) Seismic interpretation of circular geological structures. Pet Geosci 5:273–285. doi: 10.1144/petgeo.5.3.273 CrossRefGoogle Scholar
  79. Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am Assoc Pet Geol Bull 74:1559–1570Google Scholar
  80. Whiticar MJ (2002) Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay. Mar Geol 182:29–53. doi: 10.1016/S0025-3227(01)00227-4 CrossRefGoogle Scholar
  81. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem 10:759–768. doi: 10.1016/S0146-6380(86)80013-4 CrossRefGoogle Scholar
  82. Whitmarsh R, Weser O, Ross D (1974) Introduction. In: Initial reports of the deep sea drilling project, 23. US Government Printing Office, Washington. doi: 10.2973/dsdp.proc.23.101.1974
  83. Zhuo Q-G, Meng F-W, Song Y, Yang H-J, Li Y, Ni P (2014) Hydrocarbon migration through salt: evidence from Kelasu tectonic zone of Kuqa foreland basin in China. Carbonates Evaporites 29:291–297. doi: 10.1007/s13146-013-0177-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Leibniz Institute for Baltic Sea ResearchWarnemündeGermany
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.Institute of GeosciencesKiel UniversityKielGermany
  4. 4.Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.SalzhemmendorfGermany

Personalised recommendations