Advertisement

Geo-Marine Letters

, Volume 36, Issue 3, pp 187–196 | Cite as

Gas migration through Opouawe Bank at the Hikurangi margin offshore New Zealand

  • Stephanie Koch
  • Henning Schroeder
  • Matthias Haeckel
  • Christian Berndt
  • Joerg Bialas
  • Cord Papenberg
  • Dirk Klaeschen
  • Andreia Plaza-Faverola
Original

Abstract

This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand’s Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500–2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.

Keywords

Bottom Simulate Reflection Anticlinal Structure Seep Site Online Electronic Supplementary Material Seismic Reflection Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Cruise SO214 NEMESYS Legs 1 and 2 were financed by the German Federal Ministry for Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under grant no. 03G0214A. Particular thanks are directed to Captain Oliver Meyer and the entire crew of R/V SONNE for their excellent support throughout the cruise. The Pegasus_19 MCS line was kindly provided to GNS Science by the New Zealand Ministry of Economic Development (MED). We are very thankful to Ingo Pecher, University of Auckland, for establishing collaborations between GNS and Geomar that made possible the use of this Pegasus line in our study. We thank Mads Huuse and Catherine Pierre for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2016_441_MOESM1_ESM.docx (337 kb)
ESM 1 (DOCX 337 kb)

References

  1. Barnes PM, Mercier de Lépinay B (1997) Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand. J Geophys Res 102:24,931–24, 952. doi: 10.1029/97JB01384 CrossRefGoogle Scholar
  2. Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy JJ, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48. doi: 10.1016/j.margeo.2009.03.012 CrossRefGoogle Scholar
  3. Berndt C (2005) Focused fluid flow in passive continental margins. Philos Trans R Soc Lond A 63:2855–2871. doi: 10.1098/rsta.2005.1666 CrossRefGoogle Scholar
  4. Boswell R, Collett TS, Frye M, Shedd W, McConnell DR, Shelander D (2012) Subsurface gas hydrates in the northern Gulf of Mexico. Mar Pet Geol 34:4–30. doi: 10.1016/j.marpetgeo.2011.10.003 CrossRefGoogle Scholar
  5. Boudreau BP, Algar C, Johnson BD, Croudace I, Reed A, Furukawa Y, Dorgan KM, Jumars PA, Grader AS, Gardiner BS (2005) Bubble growth and rise in soft sediments. Geology 33:517–520. doi: 10.1130/G21259.1 CrossRefGoogle Scholar
  6. Brooks JM, Bryant WR, Bernard BB, Cameron NR (2000) The nature of gas hydrates on the Nigerian continental slope. Ann N Y Acad Sci 192:76–93. doi: 10.1111/j.1749-6632.2000.tb06761.x Google Scholar
  7. Bünz S, Mienert J, Berndt C (2003) Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet Sci Lett 209:291–307. doi: 10.1016/S0012-821X(03)00097-9 CrossRefGoogle Scholar
  8. Cartwright J, Santamarina C (2015) Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis. Mar Pet Geol 65:126–140. doi: 10.1016/j.marpetgeo.2015.03.023 CrossRefGoogle Scholar
  9. Cartwright J, Huuse M, Aplin A (2007) Seal bypass systems. Am Assoc Pet Geol Bull 91:1141–1166. doi: 10.1306/04090705181 Google Scholar
  10. Collot J-Y, Delteil J, Lewis KB, Davy B, Lamarche G, Audru J-C, Barnes P, Chanier F, Chaumillon E, Lallemand S, Mercier de Lépinay B, Orpin A, Pelletier B, Sosson M, Toussaint B, Uruski C (1996) From oblique subduction to intra-continental transpression: structures of the southern Kermadec-Hikurangi Margin from multibeam bathymetry, side-scan sonar and seismic reflection. Mar Geophys Res 18:357–381. doi: 10.1007/BF00286085 CrossRefGoogle Scholar
  11. Crutchley GJ, Pecher IA, Gorman AR, Henrys SA, Greinert J (2010) Seismic imaging of gas conduits beneath seafloor seep sites in a shallow marine gas hydrate province, Hikurangi Margin, New Zealand. Mar Geol 272:114–126. doi: 10.1016/j.margeo.2009.03.007 CrossRefGoogle Scholar
  12. Crutchley GJ, Berndt C, Geiger S, Klaeschen D, Papenberg C, Klaucke I, Hornbach MJ, Bangs NLB, Maier C (2013) Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA. Geology 41:551–554. doi: 10.1130/G34057.1 CrossRefGoogle Scholar
  13. Crutchley GJ, Klaeschen D, Planert L, Bialas J, Berndt C, Papenberg C, Hensen C, Hornbach MJ, Krastel S, Brueckmann W (2014) The impact of fluid advection on gas hydrate stability: investigations at sites of methane seepage offshore Costa Rica. Earth Planet Sci Lett 401:95–109. doi: 10.1016/j.epsl.2014.05.045 CrossRefGoogle Scholar
  14. Crutchley GJ, Fraser DRA, Pecher IA, Gorman AR, Maslen G, Henrys SA (2015) Gas migration into gas hydrate-bearing sediments on the southern Hikurangi margin of New Zealand. J Geophys Res Solid Earth 120:725–743. doi: 10.1002/2014JB011503 CrossRefGoogle Scholar
  15. Davy B, Wood R (1994) Gravity and magnetic modelling of the Hikurangi Plateau. Mar Geol 118:139–151. doi: 10.1016/0025-3227(94)90117-1 CrossRefGoogle Scholar
  16. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194. doi: 10.1029/94GL02118 CrossRefGoogle Scholar
  17. Gay A, Lopez M, Berndt C, Séranne M (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar Geol 244:68–92. doi: 10.1016/j.margeo.2007.06.003 CrossRefGoogle Scholar
  18. Gorman AR, Holbrook WS, Hornbach MJ, Hackwith KL, Lizarralde D, Pecher I (2002) Migration of methane gas through the hydrate stability zone in a low-flux hydrate province. Geology 30:327–330CrossRefGoogle Scholar
  19. Greinert J, Lewis KB, Bialas J, Pecher IA, Rowden A, Bowden DA, De Batist M, Linke P (2010) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272:6–25. doi: 10.1016/j.margeo.2010.01.017 CrossRefGoogle Scholar
  20. Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas-bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68:4335–4345. doi: 10.1016/j.gca.2004.01.018 CrossRefGoogle Scholar
  21. Haeckel M, Wallmann K, Boudreau BP (2007) Bubble-induced porewater mixing: a 3-D model for deep porewater irrigation. Geochim Cosmochim Acta 71:5135–5154. doi: 10.1016/j.gca.2007.08.011 CrossRefGoogle Scholar
  22. Haffert L, Haeckel M, Liebetrau V, Berndt C, Hensen C, Nuzzo M, Reitz A, Scholz F, Schönfeld J, Weise SM (2013) Fluid evolution and authigenic mineral paragenesis related to salt diapirism - the Mercator mud volcano in the Gulf of Cadiz. Geochim Cosmochim Acta 106:261–286. doi: 10.1016/j.gca.2012.12.016 CrossRefGoogle Scholar
  23. Henrys SA, Ellis S, Uruski C (2003) Conductive heat flow variations from bottom-simulating reflectors on the Hikurangi margin, New Zealand. Geophys Res Lett 30:1065. doi: 10.1029/2002GL015772 CrossRefGoogle Scholar
  24. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica - a window to the subducting slab. Geology 32:201–204. doi: 10.1130/G20119.1 CrossRefGoogle Scholar
  25. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhaes VH, Brückmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz - indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248. doi: 10.1016/j.gca.2006.11.022 CrossRefGoogle Scholar
  26. Holbrook WS, Hoskins H, Wood WT, Stephen RA, Lizarralde D (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273:1840–1843. doi: 10.1126/science.273.5283.1840 CrossRefGoogle Scholar
  27. Hornbach MJ, Saffer DM, Holbrook WS (2004) Critically pressured free-gas reservoirs below gas-hydrate provinces. Nature 427:142–144. doi: 10.1038/nature02172 CrossRefGoogle Scholar
  28. Hovland M, Judd AG (1988) Seabed pockmarks and seepages: impact on geology, biology, and the marine environment. Graham and Trotman, BostonGoogle Scholar
  29. Johnson JE, Goldfinger C, Suess E (2003) Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin. Mar Geol 202:79–120. doi: 10.1016/S0025-3227(03)00268-8 CrossRefGoogle Scholar
  30. Kastner M, Rudnicki MD (2004) Ridge flank sediment-fluid interactions. In: Davis E, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. University Press, Cambridge, pp 534–571Google Scholar
  31. Kastner M, Elderfield H, Martin JB (1991) Fluids in convergent margins: what do we know about their composition, origin, and role in diagenesis and importance for oceanic chemical fluxes? Philos Trans R Soc Lond A 335:243–259. doi: 10.1098/rsta.1991.0045 CrossRefGoogle Scholar
  32. Klaucke I, Masson DG, Petersen CJ, Weinrebe W, Ranero CR (2008) Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: implications for the quantification of seep processes. Geochem Geophys Geosyst 9, Q04010. doi: 10.1029/2007GC001708 CrossRefGoogle Scholar
  33. Koch S, Berndt C, Bialas J, Haeckel M, Crutchley G, Papenberg C, Klaeschen D, Greinert J (2015) Gas-controlled seafloor doming. Geology 43:571–574. doi: 10.1130/G36596.1 CrossRefGoogle Scholar
  34. Krabbenhoeft A, Bialas J, Klaucke I, Crutchley G, Papenberg C, Netzeband GL (2013) Patterns of subsurface fluid-flow at cold seeps: the Hikurangi Margin, offshore New Zealand. Mar Pet Geol 39:59–73. doi: 10.1016/j.marpetgeo.2012.09.008 CrossRefGoogle Scholar
  35. Kroeger KF, Plaza-Faverola A, Barnes PM, Pecher IA (2015) Thermal evolution of the New Zealand Hikurangi subduction margin: impact on natural gas generation and methane hydrate formation – a model study. Mar Pet Geol 63:97–114. doi: 10.1016/j.marpetgeo.2015.01.020 CrossRefGoogle Scholar
  36. Kvenvolden KA (1988) Methane hydrate - a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51. doi: 10.1016/0009-2541(88)90104-0 CrossRefGoogle Scholar
  37. Law CS, Nodder SD, Mountjoy JJ, Marriner A, Orpin A, Pilditch CA, Franz P, Thompson K (2010) Geological, hydrodynamic and biogeochemical variability of a New Zealand deep-water methane cold seep during an integrated three-year time-series study. Mar Geol 272:189–208. doi: 10.1016/j.margeo.2009.06.018 CrossRefGoogle Scholar
  38. Lewis KB, Collot J-Y, Lallemand SE (1998) The dammed Hikurangi Trough: a channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project). Basin Res 10:441–468. doi: 10.1046/j.1365-2117.1998.00080.x CrossRefGoogle Scholar
  39. Liebetrau V, Eisenhauer A, Linke P (2010) Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Mar Geol 272:307–318. doi: 10.1016/j.margeo.2010.01.003 CrossRefGoogle Scholar
  40. Løseth H, Gading M, Wensaas L (2009) Hydrocarbon leakage interpreted on seismic data. Mar Pet Geol 26:1304–1319. doi: 10.1016/j.marpetgeo.2008.09.008 CrossRefGoogle Scholar
  41. Milkov A, Sassen R (2002) Economic geology of offshore gas hydrate accumulations and provinces. Mar Pet Geol 19:1–11. doi: 10.1016/S0264-8172(01)00047-2 CrossRefGoogle Scholar
  42. Netzeband GL, Krabbenhoeft A, Zillmer M, Petersen CJ, Papenberg C, Bialas J (2010) The structures beneath submarine methane seeps: seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand. Mar Geol 272:59–70. doi: 10.1016/j.margeo.2009.07.005 CrossRefGoogle Scholar
  43. Nuzzo M, Hornibrook ERC, Gill F, Hensen C, Pancost RD, Haeckel M, Reitz A, Scholz F, Magalhães VH, Brückmann W, Pinheiro LM (2009) Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz - evidence for multiple sources and transport mechanisms in active sedimentary wedges. Chem Geol 266:359–372. doi: 10.1016/j.chemgeo.2009.06.023 CrossRefGoogle Scholar
  44. O’Brien GW, Woods EP (1995) Hydrocarbon-related diagenetic zones (HRDZs) in the Vulcan Sub-basin, Timor Sea: recognition and exploration implications. APPEA J 35:220–252Google Scholar
  45. Pecher IA, Henrys SA, Wood WT, Kukowski N, Crutchley GJ, Fohrmann M, Kilner J, Senger K, Gorman AR, Coffin RB, Greinert J, Faure K (2010) Focussed fluid flow on the Hikurangi Margin, New Zealand - evidence from possible local upwarping of the base of gas hydrate stability. Mar Geol 272:99–113. doi: 10.1016/j.margeo.2009.10.006 CrossRefGoogle Scholar
  46. Pinero E, Marquardt M, Hensen C, Haeckel M, Wallmann K (2013) Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10:959–975. doi: 10.5194/bg-10-959-2013 CrossRefGoogle Scholar
  47. Plaza-Faverola A, Klaeschen D, Barnes P, Pecher I, Henrys S, Mountjoy J (2012) Evolution of fluid expulsion and concentrated hydrate zones across the southern Hikurangi subduction margin, New Zealand: an analysis from depth migrated seismic data. Geochem Geophys Geosyst 13, Q08018. doi: 10.1029/2012GC004228 CrossRefGoogle Scholar
  48. Plaza-Faverola A, Pecher I, Crutchley G, Barnes PM, Bünz S, Golding T, Klaeschen D, Papenberg C, Bialas J (2014) Submarine gas seepage in a mixed contractional and shear deformation regime: cases from the Hikurangi oblique-subduction margin. Geochem Geophys Geosyst 15:416–433. doi: 10.1002/2013GC005082 CrossRefGoogle Scholar
  49. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9, Q03S04. doi: 10.1029/2007GC001679 CrossRefGoogle Scholar
  50. Scholz F, Hensen C, De Lange GJ, Haeckel M, Liebetrau V, Meixner A, Reitz A, Romer RL (2010) Lithium isotope geochemistry of marine pore waters - insights from cold seep fluids. Geochim Cosmochim Acta 74:3459–3475CrossRefGoogle Scholar
  51. Schwalenberg K, Haeckel M, Poort J, Jegen M (2010a) Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand. Mar Geol 272:79–88. doi: 10.1016/j.margeo.2009.07.006 CrossRefGoogle Scholar
  52. Schwalenberg K, Wood W, Pecher I, Hamdan L, Henrys S, Jegen M, Coffin R (2010b) Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand. Mar Geol 272:89–98. doi: 10.1016/j.margeo.2009.10.024 CrossRefGoogle Scholar
  53. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567. doi: 10.1016/S0967-0645(97)00074-X CrossRefGoogle Scholar
  54. Uruski CI, Bland K (2011) Pegasus Basin and the prospects for oil and gas. Unpublished petroleum report PR4326, GNS Science Consultancy Report 2010/291, Ministry of Economic Development, Wellington, New ZealandGoogle Scholar
  55. Wallmann K, Aloisi G, Haeckel M, Obzhirov A, Tishchenko P (2006) Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochim Cosmochim Acta 70:3905–3927. doi: 10.1016/j.gca.2006.06.003 CrossRefGoogle Scholar
  56. Wallmann K, Pinero E, Burwicz E, Haeckel M, Hensen C, Dale A, Ruepke L (2012) The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5:2449–2498. doi: 10.3390/en5072449 CrossRefGoogle Scholar
  57. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - isotope evidence. Geochim Cosmochim Acta 50:693–709. doi: 10.1016/0016-7037(86)90346-7 CrossRefGoogle Scholar
  58. Wood WT, Gettrust JF (2001) Deep-tow seismic investigations of methane Hydrates. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Am Geophys Union Geophys Monogr 124:165–178Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stephanie Koch
    • 1
  • Henning Schroeder
    • 1
  • Matthias Haeckel
    • 1
  • Christian Berndt
    • 1
  • Joerg Bialas
    • 1
  • Cord Papenberg
    • 1
  • Dirk Klaeschen
    • 1
  • Andreia Plaza-Faverola
    • 2
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.CAGE-Centre for Arctic Gas Hydrate, Environment, and Climate, Department of GeologyUiT The Arctic University of NorwayTromsøNorway

Personalised recommendations