Geo-Marine Letters

, Volume 36, Issue 1, pp 15–24 | Cite as

Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

  • Maria E. Christopoulou
  • Theo J. MertzimekisEmail author
  • Paraskevi Nomikou
  • Dimitrios Papanikolaou
  • Steven Carey
  • Manolis Mandalakis


The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini’s volcanic complex in the south Aegean Sea, Greece. Kolumbo’s last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo’s crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo’s cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo’s morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X–Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.


Hydrothermal Activity Crater Floor Submarine Volcano Active Vent Crater Bottom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Institute for Exploration (IFE–USA) and the collaborative project “New Frontiers in the Ocean Exploration” in 2010 and 2011. The officers and crew of the E/V Nautilus are gratefully acknowledged for their expertise in handling the fieldwork. Thanks go also to Dr. Katherine Croff Bell, Vice President of the Ocean Exploration Trust for her important contribution during the cruises. This paper benefitted significantly from discussions with Prof. S. Kilias and Dr. S.L. Walker. TJM would like to thank Mr. I. Livanos for assistance in creating the isobath distributions. We are grateful to an anonymous reviewer and the journal editors for their comments that vastly improved the quality of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Alendal G, Drange H (2001) Two-phase, near-field modeling of purposefully released CO2 in the ocean. J Geophys Res 106:1085–1096. doi: 10.1029/1999JC000290 CrossRefGoogle Scholar
  2. Baker ET, German CR (2004) On the global distribution of hydrothermal vent fields. Am Geophys Union Geophys Monogr Ser 148:245–266. doi: 10.1029/148GM10 Google Scholar
  3. Baker ET, Massoth GJ, Walker SL, Embley RW (1993) A method for quantitatively estimating diffuse and discrete hydrothermal discharge. Earth Planet Sci Lett 118:235–249. doi: 10.1016/0012-821X(93)90170-E CrossRefGoogle Scholar
  4. Baker ET, Feely RA, Mottl MLJ, Sansone FT, Wheat CG, Resing JA, Lupton JE (1994) Hydrothermal plumes along the East Pacific Rise, 8°40’ to 11°50’N: plume distribution and relationship to the apparent magmatic budget. Earth Planet Sci Lett 128:1–17. doi: 10.1016/0012-821X(94)90022-1 CrossRefGoogle Scholar
  5. Bischoff J, Rosenbauer R (1987) Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport. Am J Sci 287:953–978. doi: 10.2475/ajs.287.10.953 CrossRefGoogle Scholar
  6. Brewer P (2013) A different ocean acidification hazard: the Kolumbo submarine volcano example. Geology 41:1039–1040. doi: 10.1130/focus092013.1 CrossRefGoogle Scholar
  7. Camilli R, Sakellariou D, Foley B, Anagnostou C, Malios A, Bingham B, Eustice R, Goudreau J (2007) Investigation of hydrothermal vents in the Aegean Sea using an integrated mass spectrometer and acoustic navigation system onboard a human occupied submersible. Rapport Commission International pour l’exploration scientifique de la Mer Méditerranée 38Google Scholar
  8. Carey S, Bell Croff K, Nomikou P, Vougioukalakis G, Roman C, Cantner K, Bejelou K, Bourbouli M, Martin J (2011) Exploration of the Kolumbo volcanic rift zone. Oceanography 24(1 suppl):24–25. doi: 10.5670/oceanog.24.1.supplement Google Scholar
  9. Carey S, Nomikou P, Croff Bell K, Lilley M, Lupton J, Roman C, Stathopoulou E, Bejelou K, Ballard R (2013) CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41:1035–1038. doi: 10.1130/G34286.1 CrossRefGoogle Scholar
  10. Cheminée JL, Stoffers P, McMurtry G, Richnow H, Puteanus D, Sedwick P (1991) Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Planet Sci Lett 107:318–327. doi: 10.1016/0012-821X(91)90079-W CrossRefGoogle Scholar
  11. Craig H, Turekian K (1980) The GEOSECS program: 1976-1979. Earth Planet Sci Lett 49:263–265. doi: 10.1016/0012-821X(80)90071-0 CrossRefGoogle Scholar
  12. Cruise Log (2011) Santorini, Kolumbo and Nisyros Projects (NA007 & NA011) State file Nos. 2010-022 & 2010-064. Tech rep, Institute for Exploration, Ocean Exploration Trust & URI Center for Ocean ExplorationGoogle Scholar
  13. de Ronde CEJ, Baker E, Massoth G, Lupton J, Wright I, Sparks R, Bannister S, Reyners M, Walker S, Greene R, Ishibashi J, Faure K, Resing J, Lebon G (2007) Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: large-scale effects on venting. Geochem Geophys Geosyst 8, Q07007. doi: 10.1029/2006GC001495 CrossRefGoogle Scholar
  14. Dupré S, Mascle J, Foucher J-P, Harmegnies F, Woodside J, Pierre C (2014) Warm brine lakes in craters of active mud volcanoes, Menes caldera off NW Egypt: evidence for deep-rooted thermogenic processes. Geo-Mar Lett 34:153–168. doi: 10.1007/s00367-014-0367-1 CrossRefGoogle Scholar
  15. Fouqué F (1879) Santorin et ses éruptions. Masson, ParisGoogle Scholar
  16. Fraile-Nuez E, González-Dávila M, Santana-Casiano J, Arístegui J, Alonso-González I, Hernández-León S, Blanco M, Rodríguez-Santana A, Hernández-Guerra A, Gelado-Caballero M, Eugenio F, Marcello J, de Armas D, Dominguez-Yanes J, Montero M, Laetsch D, Vélez-Belchi P, Ramos A, Ariza A, Comas-Rodríguez I, Benitez-Barrios V (2012) The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response. Sci Rep 2:486. doi: 10.1038/srep00486 Google Scholar
  17. Fytikas M, Giuliani O, Innocenti F, Marinelli G, Mazzuoli R (1976) Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 31:T29–T34. doi: 10.1016/0040-1951(76)90161-X CrossRefGoogle Scholar
  18. Fytikas M, Innocenti F, Manetti P, Peccerillo A, Mazzuoli R, Villari L (1984) Tertiary to quaternary evolution of volcanism in the Aegean region. Geol Soc Lond, Spec Publ 17:687–699. doi: 10.1144/GSL.SP.1984.017.01.55 CrossRefGoogle Scholar
  19. German C, Von Damm K (2004) Hydrothermal processes. In: Holland H, Turekian K, Elderfield H (eds) Treatise on geochemistry, vol 6, The oceans and marine geochemistry. Elsevier, Amsterdam, pp 181–222Google Scholar
  20. Hannington M, de Ronde C, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, CO, pp 111–141Google Scholar
  21. Hunziker J, Marini LE (eds) (2005) The geology, geochemistry and evolution of Nisyros volcano (Greece): implications for the volcanic hazards. Mémoires de Géologie, vol 44. Section des Sciences de la Terre, Université de LausanneGoogle Scholar
  22. Kilias SP, Nomikou P, Papanikolaou D, Polymenakou P, Godelitsas A, Argyraki A, Carey S, Gamaletsos P, Mertzimekis T, Stathopoulou E, Goettlicher J, Steininger R, Betzelou K, Livanos I, Christakis C, Croff Bell K, Scoullos M (2013) New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Sci Rep 3:2421. doi: 10.1038/srep02421 CrossRefGoogle Scholar
  23. Kusakabe M, Tanyileke G, McCord S, Schladow S (2000) Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation. J Volcanol Geotherm Res 97:241–260. doi: 10.1016/S0377-0273(99)00170-5 CrossRefGoogle Scholar
  24. Livanos I, Nomikou P, Papanikolaou D, Rousakis G (2013) The volcanic debris avalanche on the SE submarine slope of Nisyros volcano, Greece: geophysical exploration and implications for subaerial eruption history. Geo-Mar Lett 33:419–431. doi: 10.1007/s00367-013-0338-y CrossRefGoogle Scholar
  25. López C, Blanco MJ, Abella R, Brenes B, Cabrera Rodríguez VM, Casas B, Domínguez-Cerdenã I, Felpeto A, de Villalta MF, del Fresno C, Garcia O, Garcia-Arias M, Garcia-Cañada L, Gomis Moreno A, González-Alonso E, Guzmán Pérez J, Iribarren I, López-Diaz R, Luengo-Oroz N, Meletlidis S, Moreno M, Moure D, de Pablo J, Rodero C, Romero E, Sainz-Maza S, Sentre Domingo M, Torres P, Trigo P, Villasante-Marcos V (2012) Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys Res Lett 39, L13303. doi: 10.1029/2012GL051846 Google Scholar
  26. McKenzie D (1970) Plate tectonics of the Mediterranean region. Nature 226:239–243. doi: 10.1038/226239a0 CrossRefGoogle Scholar
  27. Megalovasilis P, Godelitsas A (2015) Hydrothermal influence on nearshore sediments of Kos Island, Aegean Sea. Geo-Mar Lett 35:77–89. doi: 10.1007/s00367-014-0393-z CrossRefGoogle Scholar
  28. Millero F (2013) Chemical oceanography, 4th edn. CRC Press, Boca RatonGoogle Scholar
  29. Millero F, Pierrot D, Lee K, Wanninkhof R, Feely R, Sabine C, Key R, Takahashi T (2002) Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res I Oceanogr Res Pap 49:1705–1723. doi: 10.1016/S0967-0637(02)00093-6 CrossRefGoogle Scholar
  30. Nittis K, Zervakis V, Perivoliotis L, Papadopoulos A, Chronis G (2001) Operational monitoring and forecasting in the Aegean Sea: system limitations and forecasting skill evaluation. Mar Pollut Bull 43:154–163. doi: 10.1016/S0025-326X(01)00055-8 CrossRefGoogle Scholar
  31. Nomikou P (2004) Santorini and Nisyros: similarities and differences between the two calderas of the modern Aegean Volcanic Arc. In: Briand F (ed) CIESM 2004. Human records of recent geological evolution in the Mediterranean Basin - historical and archaeological evidence, vol 24. CIESM, Monaco, pp 103–108Google Scholar
  32. Nomikou P, Carey S, Papanikolaou D, Bell KC, Sakellariou D, Alexandri M, Bejelou K (2012) Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob Planet Change 90–91:135–151. doi: 10.1016/j.gloplacha.2012.01.001 CrossRefGoogle Scholar
  33. Nomikou P, Papanikolaou D, Alexandri M, Sakellariou D, Rousakis G (2013) Submarine volcanoes along the Aegean volcanic arc. Tectonophysics 597–598:123–146. doi: 10.1016/j.tecto.2012.10.001 CrossRefGoogle Scholar
  34. Nomikou P, Carey S, Bell K, Papanikolaou D, Bejelou K, Cantner K, Sakellariou D, Perros I (2014) Tsunami hazard risk of a future volcanic eruption of Kolumbo submarine volcano, NE of Santorini Caldera, Greece. Nat Hazards 72:1375–1390. doi: 10.1007/s11069-012-0405-0 CrossRefGoogle Scholar
  35. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095 CrossRefGoogle Scholar
  36. Papanikolaou D (1993) Geotectonic evolution of the Aegean. Bull Geol Soc Greece 27:33–48Google Scholar
  37. Pavlakis P, Lykoussis V, Papanikolaou D, Chronis G (1990) Discovery of a new submarine volcano in the western Saronic Gulf: the Paphsanias Volcano. Bull Geol Soc Greece 24:59–70Google Scholar
  38. Phillips B, Newman J, Gregory T (2011) E/V Nautilus vehicles. Oceanography 24(1 suppl):9. doi: 10.5670/oceanog.24.1.supplement Google Scholar
  39. Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42. doi: 10.1016/0040-1951(79)90131-8 CrossRefGoogle Scholar
  40. Poulos S, Drakopoulos P, Collins M (1997) Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview. J Mar Syst 13:225–244. doi: 10.1016/S0924-7963(96)00113-3 CrossRefGoogle Scholar
  41. Resing JA, Baker ET, Lupton JE, Walker SL, Butterfield DA, Massoth GJ, Nakamura K-i (2009) Chemistry of hydrothermal plumes above submarine volcanoes of the Mariana Arc. Geochem Geophys Geosyst 10, Q02009. doi: 10.1029/2008GC002141 CrossRefGoogle Scholar
  42. Roether W, Klein B, Manca BB, Theocharis A, Kioroglou S (2007) Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea. In: The 1990s Progress in Oceanography 74:540–571. doi: 10.1016/j.pocean.2007.03.001
  43. Roman C, Inglis G, Vaughn JI, Smart C, Douillard B, Williams S (2012) The development of high-resolution seafloor mapping techniques. Oceanography 25:42–45. doi: 10.5670/oceanog.2011.supplement.01 CrossRefGoogle Scholar
  44. Santana-Casiano JM, González-Dávila M, Fraile-Nuez E, de Armas D, González AG, Domínguez-Yanes JF, Escánez J (2013) The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci Rep 3:1140. doi: 10.1038/srep01140 CrossRefGoogle Scholar
  45. SeaBird Electronics Inc (2013) Seabird FastCAT 49Plus. Users Manual. SeaBird Electronics Inc., BellevueGoogle Scholar
  46. Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Gogou A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos, Trans Am Geophys Union 87. doi: 10.1029/eost2006EO34
  47. Siokou-Frangou I, Bianchi M, Christaki U, Christou E, Giannakourou A, Gotsis O, Ignatiades L, Pagou K, Pitta P, Psarra S, Souvermezoglou E, Wambeke FV, Zervakis V (2002) Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). J Mar Syst 33–34:335–353. doi: 10.1016/S0924-7963(02)00065-9 CrossRefGoogle Scholar
  48. Smart CJ, Roman C, Carey SN (2013) Detection of diffuse seafloor venting using structured light imaging. Geochem Geophys Geosyst 14:4743–4757. doi: 10.1002/ggge.20280 CrossRefGoogle Scholar
  49. Stewart RH (2008) Introduction to physical oceanography. Texas A&M University, College StationGoogle Scholar
  50. Varnavas S, Cronan D (2005) Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: a synthesis. Chem Geol 224:40–54. doi: 10.1016/j.chemgeo.2005.07.013 CrossRefGoogle Scholar
  51. Walter M, Mertens C, Stöber U, German CR, Yoerger DR, Sültenfuß J, Rhein M, Melchert B, Baker ET (2010) Rapid dispersal of a hydrothermal plume by turbulent mixing. Deep-Sea Res I Oceanogr Res Pap 57:931–945. doi: 10.1016/j.dsr.2010.04.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Geology and GeoenvironmentUniversity of AthensAthensGreece
  2. 2.Faculty of PhysicsUniversity of AthensAthensGreece
  3. 3.Graduate School of OceanographyThe University of Rhode IslandNarragansettUSA
  4. 4.Institute of Marine Biology, Biotechnology and AquacultureHellenic Centre for Marine ResearchHeraklionGreece

Personalised recommendations