Geo-Marine Letters

, Volume 35, Issue 4, pp 305–314 | Cite as

Altered marine tephra deposits as potential slope failure planes?

Original

Abstract

Weathering of tephra results in increasing proportions of mechanically weak, authigenic clay minerals (smectite). This suggests that altered tephra represent inherent weak layers in slope sediment sequences, and these may facilitate slope failure in submarine and other aquatic environments. In drained direct shear experiments, tephra in different alteration stages were compared to common sand–clay mixtures for geotechnical reference. Attention is drawn to the influence of particle shape on shear strength. The results revealed volcanic ash to have (1) a high strength end-member at low alteration stages due to particle roughness and angularity and (2) a low strength end-member after complete diagenetic alteration, both under static conditions. This would suggest that strongly altered volcanic ash layers could potentially be responsible for slope failures. However, a review of ODP and IODP Expedition reports shows that advanced ash alteration mostly occurs at depths below (>800 mbsf) those commonly observed for slope failure initiation (<400 mbsf). This, in turn, suggests that volcanic ash alteration does not play an important role in the initiation of slope failure.

References

  1. Bolton MD (1986) The strength and dilatancy of sand. Géotechnique 36:65–78CrossRefGoogle Scholar
  2. Brown KM, Kopf A, Underwood MB, Weinberger JL (2003) Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: a weak plate boundary. Earth Planet Sci Lett 214:589–603CrossRefGoogle Scholar
  3. Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Shipp C, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 503–513Google Scholar
  4. Castro G (1975) Liquefaction and cyclic mobility of saturated sands. J Geotech Eng 101:551–569Google Scholar
  5. Christidis GE (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays Clay Minerals 49:204–215CrossRefGoogle Scholar
  6. Deutsches Institut für Normung (1979) Laborgeräte aus Glas; Aräometer, Grundlagen für Bau und Justierung. In: DIN-Norm 12790. Beuth, BerlinGoogle Scholar
  7. Deutsches Institut für Normung (1996) Baugrund, Untersuchung von Bodenproben - Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung. In: DIN-Norm 1826. Beuth, BerlinGoogle Scholar
  8. Deutsches Institut für Normung (2002) Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit. In: DIN-Norm 18137-3. Beuth, BerlinGoogle Scholar
  9. Expedition 333 Scientists (2012) Expedition 333 summary. In: Henry P, Kanamatsu T, Moe K, Expedition 333 Scientists, IODP Management International IfIODP (ed) IODP Preliminary Reports 333, Integrated Ocean Drilling Program Management International, TokyoGoogle Scholar
  10. Expedition 340 Scientists (2012) Lesser Antilles volcanism and landslides: implications for hazard assessment and long-term magmatic evolution of the arc. In: IODP Management International IfIODP (ed) IODP Preliminary Reports 340Google Scholar
  11. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, BerlinCrossRefGoogle Scholar
  12. Ghiara MR, Petti C (1995) Chemical alteration of volcanic glasses and related control by secondary minerals: experimental studies. Aquat Geochem 1:329–354CrossRefGoogle Scholar
  13. Gieskes JM, Lawrence JR (1981) Alteration of volcanic matter in deep sea sediments: evidence from the chemical composition of interstitial waters from deep sea drilling cores. Geochim Cosmochim Acta 45:1687–1703. doi:10.1016/0016-7037(81)90004-1 CrossRefGoogle Scholar
  14. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59CrossRefGoogle Scholar
  15. Harders R, Kutterolf S, Hensen C, Moerz T, Brueckmann W (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 11, Q05S23. doi:10.1029/2009GC002844 Google Scholar
  16. Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, CAGoogle Scholar
  17. Hein JR, Scholl DW (1978) Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geol Soc Am Bull 89:197–210CrossRefGoogle Scholar
  18. Hühnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362CrossRefGoogle Scholar
  19. Kopf A, Alves T, Heesemann B, Kaul N, Kock I, Krastel S, Reichelt M, Schäfer R, Stegmann S, Strasser M, Thölen M (2006) Report and preliminary results of Poseidon cruise P336: CREST - Cretan Sea Tectonics and Sedimentation. Berichte Fachbereich Geowissenschaften 253, University of Bremen, BremenGoogle Scholar
  20. Krumbein WC, Sloss LL (eds) (1963) Stratigraphy and sedimentation. W.H. Freeman, San Francisco, CAGoogle Scholar
  21. Laberg JS, Kawamura K, Amundsen H, Baeten N, Forwick M, Rydningen TA, Vorren TO (2014) A submarine landslide complex affecting the Jan Mayen Ridge, Norwegian–Greenland Sea: slide-scar morphology and processes of sediment evacuation. Geo-Mar Lett 34:51–58. doi:10.1007/s00367-013-0345-z CrossRefGoogle Scholar
  22. Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Géotechnique 51:197–243CrossRefGoogle Scholar
  23. Leroueil S, Vaunat J, Picarelli L, Locat J, Lee Homa J, Faure R (1996) Geotechnical characterization of slope movements. In: Proc Int Symposium on Landslides, Trondheim, pp 53–74Google Scholar
  24. Locat J, Leroueil S, Locat A, Lee H (2014) Weak layers: their definition and classification from a geotechnical perspective. In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine Mass Movements and Their Consequences. Springer, Berlin, pp 3–12CrossRefGoogle Scholar
  25. Loizeau J-L, Arbouille D, Santiago S, Vernet J-P (1994) Evaluation of a wide range laser diffraction grain-size analyser for use with sediments. Sedimentology 41:353–361CrossRefGoogle Scholar
  26. Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Géotechnique 31:181–213CrossRefGoogle Scholar
  27. Mair K, Frye KM, Marone C (2002) Influence of grain characteristics on the friction of granular shear zones. J Geophys Res 107:ECV 4-1–ECV 4-9. doi:10.1029/2001JB000516 Google Scholar
  28. Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc A Math Phys Eng Sci 364:2009–2039CrossRefGoogle Scholar
  29. Matthews DH (1962) Altered lavas from the floor of the eastern North Atlantic. Nature 194:368–369. doi:10.1038/194368a0 CrossRefGoogle Scholar
  30. McAdoo B, Pratson L, Orange D (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136CrossRefGoogle Scholar
  31. Mitchell JK, Soga K (2005) Fundamentals of soil behaviour. Wiley, Hoboken, NJGoogle Scholar
  32. Mix AC, Tiedemann R, Blum P (2003) Proc ODP. In: Init Repts 202, College Station, TXGoogle Scholar
  33. Noorany I (1989) Classification of marine sediments. J Geotech Eng 115:23–37. doi:10.1061/(ASCE)0733-9410 CrossRefGoogle Scholar
  34. Parson L, Hawkins J, Allan J et al. (1992) Proc ODP. In: Init Repts 135, College Station, TXGoogle Scholar
  35. Perry EA Jr, Edward A, Gieskes JM, Lawrence JR (1976) Mg, Ca and O18/O16 exchange in the sediment-pore water system, hole 149, DSDP. Geochim Cosmochim Acta 40:413–423. doi:10.1016/0016-7037(76)90006-5 CrossRefGoogle Scholar
  36. Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res 108(B10):2504. doi:10.1029/2001JB000818 CrossRefGoogle Scholar
  37. Ross CS, Hendricks SB (1945) Minerals of the montmorillonite group: their origin and relation to soils and clays. US Government Printing Office, WashingtonGoogle Scholar
  38. Ross CS, Shannon EV (1926) The minerals of bentonite and related clays and their physical properties 1. J Am Ceramic Soc 9:77–96. doi:10.1111/j.1151-2916.1926.tb18305.x CrossRefGoogle Scholar
  39. Sacks IS, Suyehiro K, Acton GD (2000) Proc ODP. In: Init Repts 186, College Station, TXGoogle Scholar
  40. Sadrekarimi A, Olson SM (2010) Particle damage observed in ring shear tests on sands. Can Geotech J 47:497–515. doi:10.1139/T09-117 CrossRefGoogle Scholar
  41. Sadrekarimi A, Olson SM (2011) Critical state friction angle of sands. Géotechnique 61:771–783CrossRefGoogle Scholar
  42. Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, Setiawan H, Takara K, Nagai O, Yamashiki Y, Tutumi S (2012) A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan—based on the undrained dynamic-loading ring shear tests and computer simulation. Landslides 9:439–455. doi:10.1007/s10346-012-0356-2 CrossRefGoogle Scholar
  43. Strasser M, Henry P, Kanamatsu T, Thu M, Moore G (2012) Scientific drilling of mass-transport deposits in the Nankai Accretionary Wedge: first results from IODP Expedition 333. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 671–681CrossRefGoogle Scholar
  44. Stroncik N, Schmincke H-U (2002) Palagonite – a review. Int J Earth Sci 91:680–697. doi:10.1007/s00531-001-0238-7 CrossRefGoogle Scholar
  45. Suess E, von Huene R (1988) Proc ODP. In: Init Repts 112, College Station, TXGoogle Scholar
  46. Syvitski JPM, Asprey KW, Clattenburg DA (1991) Principles, design and calibration of settling tubes. In: Syvitski JPM (ed) Principles, methods and application of particle size analysis. Cambridge University Press, New York, pp 45–63CrossRefGoogle Scholar
  47. Vogt C, Lauterjung J, Fischer RX (2002) Investigation of the clay fraction (<2 μm) of the clay minerals society reference clays. Clays Clay Minerals 50:388–400CrossRefGoogle Scholar
  48. Vrolijk P (1990) On the mechanical role of smectite in subduction zones. Geology 18:703–707CrossRefGoogle Scholar
  49. Wiemer G, Reusch A, Strasser M, Kreiter S, Otto D, Mörz T, Kopf A (2012) Static and cyclic shear strength of cohesive and non-cohesive sediments. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 111–121CrossRefGoogle Scholar
  50. Wiemer G, Moernaut J, Stark N, Kempf P, De Batist M, Pino M, Urrutia R, de Guevara B, Strasser M, Kopf A (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci (in press). doi:10.1007/s00531-015-1144-8
  51. Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68:4843–4858. doi:10.1016/j.gca.2004.05.027 CrossRefGoogle Scholar
  52. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MARUM - Center for Marine Environmental SciencesBremenGermany

Personalised recommendations