Geo-Marine Letters

, Volume 35, Issue 2, pp 105–117 | Cite as

Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene

  • Agata SzczygielskiEmail author
  • Karl Stattegger
  • Klaus Schwarzer
  • André  Giskard Aquino da Silva
  • Helenice Vital
  • Juliane Koenig


Sedimentary processes and the evolution of the wave- and tide-dominated, asymmetric Parnaíba Delta during the late Holocene were investigated based on geochemical and sedimentological analyses of sediment cores collected in 2010, as well as satellite images and historical maps. This is a rare case of pristine deltas essentially unaffected by human activities worldwide. The lowermost part of the main Parnaíba River distributary exhibits several low-sinuosity bends and several anastomosing bifurcation patterns in the east, whereas three NW–SE-oriented tidal channels drain a large mangrove area in the west. Dating of various materials in sediment cores from the tidal flats, tidal channels and supratidal marshes revealed that the oldest sediment (4,853 to 4,228 cal. years BP) is paleo-mangrove soil from the main river distributary. Present-day mangroves and marshes up to 200 years old exhibit high sedimentation rates reaching 3.4 cm/year. The asymmetry of the delta is explained not only by the wind- and wave-induced westward-directed longshore drift but also by neotectonic processes, as revealed by satellite images. Faulting and eastward tilting may have triggered delta lobe switching from west to east. This would explain the erosional character and unusual updrift orientation of the main river-mouth channel. Consistent with existing knowledge on mangrove ecosystems worldwide, sediment carbon and nitrogen signatures lie in the range of freshwater or marine dissolved organic carbon and C3 terrestrial plants. In the western tidal channels, the low Corg/Ntot ratios (16–21) of young mangrove soil (deposited in the last 16 years) reflect a stronger influence of marine plants compared to older mangroves (1,390–1,525 cal. years BP; ratios of 20–37). Thus, there would have been a greater influence of the Parnaíba River on tidal-channel sedimentology 1,400 to 1,500 years ago, entailing a natural connection between the present-day tidal channels and the river in ancient times, which was abandoned later during delta lobe switching. This is substantiated by historical maps that indeed show this connection between the main distributary and the tidal-channel system.


Mangrove Forest Tidal Channel Dune Field Muddy Sand Mangrove Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the DFG for the financial support (grant STA401/16-1) and the Federal University of Rio Grande do Norte (UFRN) in Natal for personal and logistic support. Many thanks go to Jan Scholten and Nils Andersen for the Pb-210 measurements and help with their interpretation, to Niko Lahajnar and Martin Wiesner for the carbon and nitrogen measurements, and to Daniel from “Casa de Caboclo” for aid during the field campaigns. We acknowledge also A. Cooper and the anonymous reviewer, as well as the journal editors for useful feedback.


  1. Alexander CR, Nittrouer CA, Demaster DJ, Park Y-A, Park S-C (1991) Macrotidal mudflats of the southwestern Korean coast; a model for interpretation of intertidal deposits. J Sed Res 61:805–824Google Scholar
  2. Almeida-Filho R, Rossetti DF, Miranda FP, Ferreira FJ, Silva C, Beisl C (2009) Quaternary reactivation of a basement structure in the Barreirinhas Basin, Brazilian Equatorial Margin. Quat Res 72:103–110CrossRefGoogle Scholar
  3. ANA (2013) Agencia Nacional de Águas., accessed 6 May 2014
  4. Angulo RJ, Lessa GC, Souza MC (2006) A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quat Sci Rev 25:486–506CrossRefGoogle Scholar
  5. Arora B, Padilha A, Vitorello Í, Trivedo N, Fontes S, Rigoti A, Chamalaun F (1999) 2-D geoelectrical model for the Parnaı́ba Basin conductivity anomaly of northeast Brazil and tectonic implications. Tectonophysics 302:57–69CrossRefGoogle Scholar
  6. Azevedo RP (1991) Tectonic evolution of Brazilian equatorial continental margins. PhD Thesis, Royal School of Mines, Imperial College, LondonGoogle Scholar
  7. Bartholomä A, Flemming BW (2007) Progressive grain-size sorting along an intertidal energy gradient. Sed Geol 202(3):464–472. doi: 10.1016/j.sedgeo.2007.03.010 CrossRefGoogle Scholar
  8. Bezerra FH, Barreto AM, Suguio K (2003) Holocene sea-level history on the Rio Grande do Norte State coast, Brazil. Mar Geol 196:73–89CrossRefGoogle Scholar
  9. Bhattacharya JP, Giosan L (2003) Wave-influenced deltas: geomorphological implications for facies reconstruction. Sedimentology 50:187–210CrossRefGoogle Scholar
  10. Bianchi TS, Galler JJ, Allison MA (2007) Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuar Coastal Shelf Sci 73:211–222CrossRefGoogle Scholar
  11. da SP Bittencourt AC, Dominguez JML, Martin L, Silva IR (2005) Longshore transport on the northeastern Brazilian coast and implications to the location of large scale accumulative and erosive zones: an overview. Mar Geol 219:219–234CrossRefGoogle Scholar
  12. Bittencourt ACDSP, Dominguez JML, Fontes LCS, Sousa DL, Silva IR, da Silva FR (2007) Wave refraction, river damming, and episodes of severe shoreline erosion: the São Francisco river mouth, Northeastern Brazil. J Coastal Res 23(4):930–938CrossRefGoogle Scholar
  13. Bouillon S, Dahdouh-Guebas F, Rao AVVS, Koedam N, Dehairs F (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39CrossRefGoogle Scholar
  14. Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59:44–58CrossRefGoogle Scholar
  15. de Oliveira Caldas LH, Stattegger K, Vital H (2006a) Holocene sea-level history: evidence from coastal sediments of the northern Rio Grande do Norte coast, NE Brazil. Mar Geol 228:39–53CrossRefGoogle Scholar
  16. de Oliveira Caldas LH, de Jr Oliveira JG, de Medeiros WE, Stattegger K, Vital H (2006b) Geometry and evolution of Holocene transgressive and regressive barriers on the semi-arid coast of NE Brazil. Geo-Mar Lett 26:249–263CrossRefGoogle Scholar
  17. Chu ZX, Sun XG, Zhai SK, Xu KH (2006) Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images. Mar Geol 227:13–30CrossRefGoogle Scholar
  18. Correggiari A, Cattaneo A, Trincardi F (2005) The modern Po Delta system: lobe switching and asymmetric prodelta growth. Mar Geol 222(223):49–74CrossRefGoogle Scholar
  19. Costa JBS, Hasui Y, Bemerguy RL, Soares-Júnior AV, Villegas JMC (2002) Tectonics and paleogeography of the Marajó Basin, northern Brazil. Anais Acad Bras Ciências (Annals Braz Acad Sci) 74:519–531CrossRefGoogle Scholar
  20. Da Cruz Miranda MC, De Fátima Rossetti D, Carlos Ruiz Pessenda L (2009) Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil): facies, δ13C, δ15N and C/N. Palaeogeogr Palaeoclimatol Palaeoecol 282:19–31CrossRefGoogle Scholar
  21. Dehairs F, Rao RG, Mohan PC, Raman AV, Maguillier S, Hellings L (2000) Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami–Godavari Delta, Bay of Bengal (India). Hydrobiologia 431:225–241CrossRefGoogle Scholar
  22. Dominguez JML (2009) The coastal zone of Brazil. In: Dillenburg S, Hesp P (eds) Geology and geomorphology of Holocene coastal barriers of Brazil. Springer, Heidelberg, pp 17–51CrossRefGoogle Scholar
  23. Fan D (2012) Open-coast tidal flats. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Heidelberg, pp 187–229CrossRefGoogle Scholar
  24. Flemming BW (2012) Siliciclastic back-barrier tidal flats. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Heidelberg, pp 231–267CrossRefGoogle Scholar
  25. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62:344–359CrossRefGoogle Scholar
  26. Frey RW, Howard JD, Han S-J, Park B-K (1989) Sediments and sedimentary sequences on a modern macrotidal flat, Inchon, Korea. J Sed Res 59:28–44Google Scholar
  27. Galloway WE (1975) Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Broussard ML (ed) Deltas: models for exploration. Houston Geological Society, Houston, pp 87–98Google Scholar
  28. Giresse P, Pascucci V, Lymer G, Gaullier V, Thinon I (2014) Processes controlling very low sedimentation rates on the continental slope of the Gonone-Orosei canyon system, NE Sardinia—terrestrial and oceanic significance. Geo-Mar Lett 34:483–498CrossRefGoogle Scholar
  29. Heck (1842) Brazil Empire Rio de Janeiro original historical old map., accessed 4 April 2014
  30. Hesp PA, Maia LP, Claudino-Sales V (2009) The Holocene barriers of Maranhão, Piauí and Ceará, Northeastern Brazil. In: Dillenburg S, Hesp P (eds) Geology and geomorphology of Holocene coastal barriers of Brazil. Springer, Heidelberg, pp 325–345CrossRefGoogle Scholar
  31. Irion G, de Morais JO, Bungenstock F (2012) Holocene and Pleistocene sea-level indicators at the coast of Jericoacoara, Ceará, NE Brazil. Quat Res 77(2):251–257CrossRefGoogle Scholar
  32. Jaffe BE, Smith RE, Foxgrover AC (2007) Anthropogenic influence on sedimentation and intertidal mudflat change in San Pablo Bay, California: 1856–1983. Estuar Coastal Shelf Sci 73:175–187CrossRefGoogle Scholar
  33. Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30CrossRefGoogle Scholar
  34. Knoppers B, Ekau W, Figueiredo AG (1999) The coast and shelf of east and northeast Brazil and material transport. Geo-Mar Lett 19:171–178CrossRefGoogle Scholar
  35. Kuehl SA, Nittrouer CA, DeMaster DJ (1985) Distribution of sedimentary structures in the Amazon subaqueous delta. Cont Shelf Res 6:311–336CrossRefGoogle Scholar
  36. Labohidro (1999) Diagnóstico ambiental da Ilha do Caju. Relatório sintese das unidades ambientais. Universidade Federal do Maranhão, MaranhãoGoogle Scholar
  37. Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75:29–57CrossRefGoogle Scholar
  38. Lanesky DE, Logan BW, Brown RG, Hine AC (1979) A new approach to portable vibracoring underwater and on land. J Sed Petrol 49:665–657CrossRefGoogle Scholar
  39. Leipe T, Tauber F, Vallius H, Virtasalo J, Uścinowicz S, Kowalski N, Hille S, Lindgren S, Myllyvirta T (2011) Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar Lett 31:175–188CrossRefGoogle Scholar
  40. Lo EL, Bentley SJ Sr, Xu K (2014) Experimental study of cohesive sediment consolidation and resuspension identifies approaches for coastal restoration: Lake Lery, Louisiana. Geo-Mar Lett 34:499–509CrossRefGoogle Scholar
  41. Marques M, da Costa MF, de O Mayorga MI, Pinheiro PRC (2004) Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil. J Human Environ 33(1):68–77Google Scholar
  42. Martinez JM, Guyot JL, Filizola N, Sondag F (2009) Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena 79:257–264CrossRefGoogle Scholar
  43. Müller A, Mathesius U (1999) The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeogr Palaeoclimatol Palaeoecol 145:1–16CrossRefGoogle Scholar
  44. Nimer E (1979) Climatology of Brazil (in Portuguese). Série Recursos Naturais e Meio Ambiente, vol 4. SUPREN/IBGE, Rio de JaneiroGoogle Scholar
  45. Nittrouer CA, Sternberg RW, Carpenter R, Bennett JT (1979) The use of Pb-210 geochronology as a sedimentological tool: application to the Washington continental shelf. Mar Geol 31:297–316CrossRefGoogle Scholar
  46. Perdue EM, Koprivnjak J-F (2007) Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuar Coastal Shelf Sci 73:65–72CrossRefGoogle Scholar
  47. Pickering JL, Goodbred SL, Reitz MD, Hartzog TR, Mondal DR, Hossain MS (2014) Late Quaternary sedimentary record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain. Geomorphology 227:123–136. doi: 10.1016/j.geomorph.2013.09.021 CrossRefGoogle Scholar
  48. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  49. Reineck HE, Singh IB (1975) Depositional sedimentary environments. Springer, BerlinGoogle Scholar
  50. Roberts HH (1998) Delta switching: early responses to the Atchafalaya River Diversion. J Coastal Res 14(3):882–899Google Scholar
  51. Rosenbauer RJ, Swarzenski PW, Kendall C, Orem WH, Hostettler FD, Rollog ME (2009) A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf. Geo-Mar Lett 29:415–429CrossRefGoogle Scholar
  52. Schäfer A (2005) Klastische Sedimente: Fazies und Sequenzstratigraphie. Elsevier, MünchenGoogle Scholar
  53. Stuiver M, Polach HA (1977) Discussion: Reporting of 14C Data. Radiocarbon 19(3):355–363Google Scholar
  54. Suguio K, Martin L (1981) Significance of Quaternary sea-level fluctuations for delta construction along the Brazilian coast. Geo-Mar Lett 1:181–185CrossRefGoogle Scholar
  55. Syvitski JPM, Saito Y (2007) Morphodynamics of deltas under the influence of humans. Global Planet Change 57:261–282CrossRefGoogle Scholar
  56. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nature Geosci 2:681–686CrossRefGoogle Scholar
  57. Szatmari P, Batista J, Françolin L, Zanotto O, Wolf S (1987) Evolução tectônica da margem equatorial brasileira. Rev Bras Geociências 17:180–188Google Scholar
  58. Szlafsztein CF (2003) Vulnerability and response measures to natural hazard and sea level rise impacts: long term coastal zone management, NE of the State of Pará, Brazil. PhD Thesis, Christian-Albrechts-Universität zu Kiel, KielGoogle Scholar
  59. Traini C, Schrottke K, Stattegger K, Dominguez JML, Guimarães JK, Vital H, d’Avila Beserra D, da Silva Aquino AG (2012) Morphology of subaqueous dunes at the mouth of the dammed River São Francisco (Brazil). J Coastal Res 28(6):1580–1590CrossRefGoogle Scholar
  60. Walle P (1910) No Brasil do Rio São Francisco ao Amazonas. Edicoes do Senado Federal 71, Brasilia 2006, pp 237–290Google Scholar
  61. Walsh J, Nittrouer C (2004) Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Mar Geol 208:225–248CrossRefGoogle Scholar
  62. Woodroffe CD (2002) Coasts. Form, process and evolution. Cambridge University Press, CambridgeGoogle Scholar
  63. Wright LD, Coleman JM (1973) Variation in morphology of major river deltas as function of ocean wave and river discharge regimes. AAPG Bull 57:370–398Google Scholar
  64. Zaborska A, Carroll J, Papucci C, Pempkowiak J (2007) Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. J Environ Radioactiv 93:38–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Agata Szczygielski
    • 1
    Email author
  • Karl Stattegger
    • 1
  • Klaus Schwarzer
    • 1
  • André  Giskard Aquino da Silva
    • 1
  • Helenice Vital
    • 2
  • Juliane Koenig
    • 1
  1. 1.Institute of Geosciences, Department of Sedimentology, Coastal and Continental Shelf ResearchUniversity of KielKielGermany
  2. 2.Universidade Federal do Rio Grande do Norte (UFRN)NatalBrazil

Personalised recommendations