Advertisement

Geo-Marine Letters

, Volume 34, Issue 5, pp 399–417 | Cite as

New constraints on oceanographic vs. seismic control on submarine landslide initiation: a geotechnical approach off Uruguay and northern Argentina

  • Fei Ai
  • Michael StrasserEmail author
  • Benedict Preu
  • Till J. J. Hanebuth
  • Sebastian Krastel
  • Achim Kopf
Original

Abstract

Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.

Keywords

Peak Ground Acceleration Void Ratio Slope Stability Slope Failure Slope Stability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the captain and crew of the R/V Meteor for their support during the M78/3 cruise. Matthias Lange is thanked for outstanding assistance with the geotechnical laboratory work. This study was funded through the DFG-Research Center/Cluster of Excellence “The Ocean in the Earth System”, as well as the Chinese Scholarship Council (to F.A.), the Swiss National Science Foundation (grant 133481 to M.S.) and the German Research Foundation DFG (grant HA4317/4-1 to TH). We highly appreciate constructive comments by S. Lafuerza, an anonymous reviewer and the journal editors which greatly helped improving an initial version of this manuscript.

References

  1. Ai F, Kuhlmann J, Huhn K, Strasser M, Kopf A (2014) Submarine slope stability assessment of the central Mediterranean continental margin: the Gela Basin. In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences. Springer, Heidelberg, pp 225–236. doi: 10.1007/978-3-319-00972-8_20
  2. Assumpção M (1998) Seismicity and stresses in the Brazilian passive margin. Bull Seismol Soc Am 88:160–169Google Scholar
  3. ASTM (2004a) Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken, PAGoogle Scholar
  4. ASTM (2004b) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PAGoogle Scholar
  5. Baraza J, Ercilla G (1994) Geotechnical properties of near-surface sediments from the Northwestern Alboran Sea slope (SW Mediterranean): influence of texture and sedimentary processes. Mar Georesources Geotechnol 12:181–200. doi: 10.1080/10641199409388261 CrossRefGoogle Scholar
  6. Biscontin G, Pestana JM (2006) Factors affecting seismic response of submarine slopes. Nat Hazards Earth Syst Sci 6:97–107. doi: 10.5194/nhess-6-97-2006 CrossRefGoogle Scholar
  7. Blum P (1997) Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. ODP Tech Note 26. doi:10.2973/odp.tn.26.1997Google Scholar
  8. Boyce RRE (1977) Deep Sea Drilling Project procedures for shear strength measurement of clayey sediment using modified Wykeham Farrance laboratory vane apparatus. Initial Reports DSDP, vol 36. US Government Printing Office, Washington, DC. doi: 10.2973/dsdp.proc.36.app5.1977
  9. Bozzano G, Violante RA, Cerredo ME (2011) Middle slope contourite deposits and associated sedimentary facies off NE Argentina. Geo-Mar Lett 31:495–507. doi: 10.1007/s00367-011-0239-x CrossRefGoogle Scholar
  10. Bryn P, Berg K, Stoker MS, Haflidason H, Solheim A (2005) Contourites and their relevance for mass wasting along the Mid-Norwegian Margin. Mar Petrol Geol 22:85–96. doi: 10.1016/j.marpetgeo.2004.10.012 CrossRefGoogle Scholar
  11. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra 24:139–171. doi: 10.1193/1.2857546 CrossRefGoogle Scholar
  12. Casagrande A (1932) Research on the Atterberg limits of soils. Public Roads 13(8):121–136Google Scholar
  13. Casagrande A (1936) The determination of the pre-consolidation load and its practical significance. In: Proc 1st Int Conf Soil Mechanics and Foundation Engineering, June 1936, Cambridge, MA. Harvard Printing Office, pp 60–64Google Scholar
  14. Craig RF (2004) Craig’s soil mechanics. CRC Press, Boca Raton, FLGoogle Scholar
  15. Dugan B, Flemings PB (2002) Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids 2:137–146. doi: 10.1046/j.1468-8123.2002.00032.x CrossRefGoogle Scholar
  16. Ewing M, Lonardi AG (1971) Sediment transport and distribution in the Argentine Basin. 5. Sedimentary structure of the Argentine margin, basin, and related provinces. Phys Chem Earth 8:123–251CrossRefGoogle Scholar
  17. Flemings PB, Long H, Dugan B, Germaine J, John CM, Behrmann JH, Sawyer D, Scientists IE (2008) Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet Sci Lett 269:309–325. doi: 10.1016/j.epsl.2007.12.005 CrossRefGoogle Scholar
  18. Franke D, Neben S, Ladage S, Schreckenberger B, Hinz K (2007) Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Mar Geol 244:46–67. doi: 10.1016/j.margeo.2007.06.009 CrossRefGoogle Scholar
  19. Garming JFL, Bleil U, Riedinger N (2005) Alteration of magnetic mineralogy at the sulfate–methane transition: analysis of sediments from the Argentine continental slope. Phys Earth Planet Interiors 151:290–308. doi: 10.1016/j.pepi.2005.04.001 CrossRefGoogle Scholar
  20. Giberto DA, Bremec CS, Acha EM, Mianzan H (2004) Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rı́o de la Plata estuary and adjacent shelf waters. Estuar Coastal Shelf Sci 61:1–13. doi: 10.1016/j.ecss.2004.03.015 CrossRefGoogle Scholar
  21. Gibson R (1958) The progress of consolidation in a clay layer increasing in thickness with time. Géotechnique 8(4):171–182CrossRefGoogle Scholar
  22. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. doi: 10.1029/95RG03287 CrossRefGoogle Scholar
  23. Harders R, Kutterolf S, Hensen C, Moerz T, Brueckmann W (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 11, Q05S23. doi: 10.1029/2009GC002844 Google Scholar
  24. Henkel S, Strasser M, Schwenk T, Hanebuth TJJ, Hüsener J, Arnold GL, Winkelmann D, Formolo M, Tomasini J, Krastel S, Kasten S (2011) An interdisciplinary investigation of a recent submarine mass transport deposit at the continental margin off Uruguay. Geochem Geophys Geosyst 12, Q08009. doi: 10.1029/2011GC003669 CrossRefGoogle Scholar
  25. Hinz K, Neben S, Schreckenberger B, Roeser HA, Block M, Souza KG, Meyer H (1999) The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Mar Petrol Geol 16:1–25. doi: 10.1016/S0264-8172(98)00060-9 CrossRefGoogle Scholar
  26. Huhn K, Kock I, Kopf A (2006) Comparative numerical and analogue shear box experiments and their implications for the mechanics along the failure plane of landslides. Norw J Geol 86:209–220Google Scholar
  27. Hühnerbach V, Masson DG, partners of the COSTA-Project (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362. doi: 10.1016/j.margeo.2004.10.013 CrossRefGoogle Scholar
  28. Huppertz TJ (2011) Styles of continental margin sedimentation: comparing glaciated and non-glaciated slope systems using case studies on the southeast Canadian and northern Argentine and Uruguay continental slope. PhD thesis, FB5, University of Bremen, BremenGoogle Scholar
  29. Klaus A, Ledbetter MT (1988) Deep-sea sedimentary processes in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms). Deep Sea Res A Oceanogr Res Pap 35:899–917. doi: 10.1016/0198-0149(88)90067-2 CrossRefGoogle Scholar
  30. Krastel S, Wefer G, Hanebuth TJJ, Antobreh AA, Freudenthal T, Preu B, Schwenk T, Strasser M, Violante R, Winkelmann D (2011) Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo-Mar Lett 31:271–283. doi: 10.1007/s00367-011-0232-4 CrossRefGoogle Scholar
  31. Krastel S, Wefer G, cruise M78/3 scientific party (2012) Sediment transport off Uruguay and Argentina: from the shelf to the deep sea. Report and preliminary results of RV METEOR Cruise M78/3. Fachbereich Geowissenschaft Universität Bremen, BremenGoogle Scholar
  32. Krastel S, Lehr J, Winkelmann D, Schwenk T, Preu B, Strasser M, Wynn RB, Georgiopoulou A, Hanebuth TJJ (2014) Mass wasting along Atlantic continental margins: a comparison between NW-Africa and the de la Plata River region (northern Argentina and Uruguay). In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences. Springer, Heidelberg, pp 459–469. doi: 10.1007/978-3-319-00972-8_41
  33. Kvalstad TJ, Nadim F, Kaynia AM, Mokkelbost KH, Bryn P (2005) Soil conditions and slope stability in the Ormen Lange area. Mar Petrol Geol 22:299–310. doi: 10.1016/j.marpetgeo.2004.10.021 CrossRefGoogle Scholar
  34. Lamb TW, Whitman RV (1969) Soil mechanics. Wiley, New YorkGoogle Scholar
  35. Lee HJ, Chough SK, Jeong KS, Han SJ (1987) Geotechnical properties of sediment cores from the southeastern Yellow Sea: effects of depositional processes. Mar Geotechnol 7:37–52. doi: 10.1080/10641198709388204 CrossRefGoogle Scholar
  36. Lee H, Locat J, Dartnell P, Israel K, Florence W (1999) Regional variability of slope stability: application to the Eel margin, California. Mar Geol 154:305–321. doi: 10.1016/S0025-3227(98)00120-0 CrossRefGoogle Scholar
  37. Leynaud D, Mienert J, Nadim F (2004) Slope stability assessment of the Helland Hansen area offshore the mid-Norwegian margin. Mar Geol 213:457–480. doi: 10.1016/j.margeo.2004.10.019 CrossRefGoogle Scholar
  38. Leynaud D, Mienert J, Vanneste M (2009) Submarine mass movements on glaciated and non-glaciated European continental margins: a review of triggering mechanisms and preconditions to failure. Mar Petrol Geol 26:618–632. doi: 10.1016/j.marpetgeo.2008.02.008 CrossRefGoogle Scholar
  39. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. doi: 10.1139/t01-089 CrossRefGoogle Scholar
  40. Locat J, Lee H (2009) Submarine mass movements and their consequences: an overview. In: Sassa K, Canuti P (eds) Landslides - Disaster risk reduction. Springer, Heidelberg, pp 115–142CrossRefGoogle Scholar
  41. Lonardi AG, Ewing M (1971) Sediment transport and distribution in the Argentine Basin. 4. Bathymetry of the continental margin, Argentine Basin and other related provinces. Canyons and sources of sediments. Phys Chem Earth 8:79–121CrossRefGoogle Scholar
  42. Løseth TM (1999) Submarine massflow sedimentation: computer modelling and basin-fill stratigraphy. Lecture Notes in Earth Sciences, vol 82. Springer, New YorkGoogle Scholar
  43. Lunne T, Berre T, Strandvik S (1997) Sample disturbance effects in soft low plastic Norwegian clay. In: Almeida M (ed) Proc 6th Int Symp Recent Developments in Soil and Pavement Mechanics, June 1997, Rio de Janeiro. A.A. Balkema, Rotterdam, pp 81–102Google Scholar
  44. Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc A Math Phys Eng Sci 364:2009–2039. doi: 10.1098/rsta.2006.1810 CrossRefGoogle Scholar
  45. Migeon S, Cattaneo A, Hassoun V, Larroque C, Corradi N, Fanucci F, Dano A, Mercier de Lepinay B, Sage F, Gorini C (2011) Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessment. Mar Geophys Res 32:225–243. doi: 10.1007/s11001-011-9123-3 CrossRefGoogle Scholar
  46. Morgenstern N (1967) Submarine slumping and the initiation of turbidity currents. In: Richards AF (ed) Marine geotechnique, proceedings. University of Illinois Press, pp 189–220Google Scholar
  47. Mulder T, Tisot J-P, Cochonat P, Bourillet J-F (1994) Regional assessment of mass failure events in the Baie des Anges, Mediterranean Sea. Mar Geol 122(1/2):29–45CrossRefGoogle Scholar
  48. O’Grady DB, Syvitski JPM, Pratson LF, Sarg JF (2000) Categorizing the morphologic variability of siliciclastic passive continental margins. Geology 28:207–210CrossRefGoogle Scholar
  49. Piola AR, Matano RP (2001) Brazil and Falklands (Malvinas) currents. In: John HS (ed) Ocean currents: A derivative of the Encyclopedia of Ocean Sciences. Academic Press, Oxford, pp 35–43Google Scholar
  50. Piola AR, Matano RP, Palma ED, Möller OO, Campos EJD (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32, L01603. doi: 10.1029/2004GL021638 CrossRefGoogle Scholar
  51. Preu B, Schwenk T, Hernández-Molina FJ, Violante R, Paterlini M, Krastel S, Tomasini J, Spieß V (2012) Sedimentary growth pattern on the northern Argentine slope: the impact of North Atlantic Deep Water on southern hemisphere slope architecture. Mar Geol 329(331):113–125. doi: 10.1016/j.margeo.2012.09.009 CrossRefGoogle Scholar
  52. Preu B, Hernández-Molina FJ, Violante R, Piola AR, Paterlini CM, Schwenk T, Voigt I, Krastel S, Spiess V (2013) Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep Sea Res I Oceanogr Res Pap 75:157–174. doi: 10.1016/j.dsr.2012.12.013 CrossRefGoogle Scholar
  53. Puga-Bernabéu Á, Webster JM, Beaman RJ (2013) Potential collapse of the upper slope and tsunami generation on the Great Barrier Reef margin, north-eastern Australia. Nat Hazards 66:557–575. doi: 10.1007/s11069-012-0502-0 CrossRefGoogle Scholar
  54. Seed HB (1979) Considerations in the earthquake-resistant design of earth and rockfill dams. Géotechnique 29:215–263CrossRefGoogle Scholar
  55. Seed HB, Idriss IM (1971) Simplified procedure for evaluation soil liquefaction potential. J Soil Mechanics Foundations Division 97:1249–1273Google Scholar
  56. Silva A (1974) Marine geomechanics: overview and projections. In: Inderbitzen A (ed) Deep-sea sediments. Springer, New York, pp 45–76CrossRefGoogle Scholar
  57. Sosa AB (1998) Sismicidad y sismotectónica en Uruguay. Física tierra 10:167–186Google Scholar
  58. Stigall J, Dugan B (2010) Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. J Geophys Res Solid Earth 115, B04101. doi: 10.1029/2009JB006848 CrossRefGoogle Scholar
  59. Strasser M, Hilbe M, Anselmetti F (2011) Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards. Mar Geophys Res 32:331–347. doi: 10.1007/s11001-010-9100-2 CrossRefGoogle Scholar
  60. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi F, Urgeles R, Vorren TO, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321. doi: 10.1016/j.margeo.2004.10.011 CrossRefGoogle Scholar
  61. Sultan N, Gennaro VD, Puech A (2012) Mechanical behaviour of gas-charged marine plastic sediments. Géotechnique 62:751–766CrossRefGoogle Scholar
  62. ten Brink US, Lee HJ, Geist EL, Twichell DC (2009) Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73. doi: 10.1016/j.margeo.2008.05.011
  63. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New YorkGoogle Scholar
  64. Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res Earth Surface 118:2600–2618. doi: 10.1002/2013JF002720 CrossRefGoogle Scholar
  65. Voigt I, Henrich R, Preu BM, Piola AR, Hanebuth TJJ, Schwenk T, Chiessi CM (2013) A submarine canyon as a climate archive—interaction of the Antarctic Intermediate Water with the Mar del Plata Canyon (Southwest Atlantic). Mar Geol 341:46–57. doi: 10.1016/j.margeo.2013.05.002 CrossRefGoogle Scholar
  66. Wood DM (1985) Some fall-cone tests. Géotechnique 35:64–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fei Ai
    • 1
    • 4
  • Michael Strasser
    • 2
    Email author
  • Benedict Preu
    • 1
    • 5
  • Till J. J. Hanebuth
    • 1
  • Sebastian Krastel
    • 3
  • Achim Kopf
    • 1
  1. 1.MARUM – Center for Marine Environmental Sciences, and Faculty of GeosciencesUniversity of BremenBremenGermany
  2. 2.Geological InstituteETH ZurichZurichSwitzerland
  3. 3.Institute for GeosciencesKiel UniversityKielGermany
  4. 4.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
  5. 5.Chevron Upstream EuropeChevron North Sea LimitedAberdeenUK

Personalised recommendations