Geo-Marine Letters

, Volume 34, Issue 2–3, pp 241–251 | Cite as

Sequentially sampled gas hydrate water, coupled with pore water and bottom water isotopic and ionic signatures at the Kukuy mud volcano, Lake Baikal: ambiguous deep-rooted source of hydrate-forming water

  • Hirotsugu Minami
  • Akihiro Hachikubo
  • Hirotoshi Sakagami
  • Satoshi Yamashita
  • Yusuke Soramoto
  • Tsuyoshi Kotake
  • Nobuo Takahashi
  • Hitoshi Shoji
  • Tatyana Pogodaeva
  • Oleg Khlystov
  • Andrey Khabuev
  • Lieven Naudts
  • Marc De Batist
Original

Abstract

The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165–193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143–165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl and HCO3 remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl concentration, similar to that of pore water sampled immediately above (135–142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3/Cl ratio of 305 differed markedly from downcore pore water HCO3/Cl ratios of 63–99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of −126 to −133‰ and δ18O of −15.7 to −16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of −123‰, δ18O of −15.6‰) and of lake bottom water (δD of −121‰, δ18O of −15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore waters of core St6GC4 and also of the neighboring cores GC2 and GC3 from the Kukuy K-9 MV show neither isotopic nor ionic evidence of such a source (e.g., elevated sulfate concentration). These findings constrain GH formation to earlier times, but a deep-rooted source of hydrate-forming water remains ambiguous. A possible long-term dampening of key deep-water source signatures deserves further attention, notably in terms of diffusion and/or advection, as well as anaerobic oxidation of methane.

References

  1. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi:10.1038/35036572 CrossRefGoogle Scholar
  2. Bohrmann G, Kuhs WF, Klapp SA, Techmer KS, Klein H, Murshed MM, Abegg F (2007) Appearance and preservation of natural gas hydrate from Hydrate Ridge sampled during ODP Leg 204 drilling. Mar Geol 244:1–14. doi:10.1016/j.margeo.2007.05.003 CrossRefGoogle Scholar
  3. Brooks JM, Kennicutt MC II, Fay RR, McDonald TJ, Sassen R (1984) Thermogenic gas hydrates in the Gulf of Mexico. Science 225:409–411. doi:10.1126/science.225.4660.409 CrossRefGoogle Scholar
  4. Charlou JL, Donval JP, Fouquet Y, Ondreas H, Knoery J, Cochonat P, Levaché D, Poirier Y, Jean-Baptiste P, Fourré E, Chazallon B, The ZAIROV Leg 2 Scientific Party (2004) Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola Basin. Chem Geol 205:405–425. doi:10.1016/j.chemgeo.2003.12.033 CrossRefGoogle Scholar
  5. Cuylaerts M, Naudts L, Casier R, Khabuev AV, Belousov OV, Kononov EE, Khlystov O, De Batist M (2012) Distribution and morphology of mud volcanoes and other fluid flow-related lake-bed structures in Lake Baikal, Russia. Geo-Mar Lett 32:383–394. doi:10.1007/s00367-012-0291-1 CrossRefGoogle Scholar
  6. Davidson DW, Leaist DG, Hesse R (1983) Oxygen-18 enrichment in the water of a clathrate hydrate. Geochim Cosmochim Acta 47:2293–2295. doi:10.1016/0016-7037(83)90053-4 CrossRefGoogle Scholar
  7. De Batist M, Klerkx J, Van Rensbergen P, Vanneste M, Poort J, Golmshtok AY, Kremlev AA, Khlystov OM, Krinitsky P (2002) Active hydrate destabilization in Lake Baikal, Siberia? Terra Nova 14:436–442. doi:10.1046/j.1365-3121.2002.00449.x CrossRefGoogle Scholar
  8. Egeberg PK (2000) Hydrates associated with fluid flow above salt diapirs (Site 996). In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164. Ocean Drilling Program, College Station, TX, pp 219–228. doi:10.2973/odp.proc.sr.164.218.2000 Google Scholar
  9. Egeberg PK, Dickens GR (1999) Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem Geol 153:53–79. doi:10.1016/S0009-2541(98)00152-1 CrossRefGoogle Scholar
  10. Granina LZ, Callender E, Lomonosov IS, Mats VD, Golobokova LP (2001) Anomalous composition of the pore water from the Baikal bottom sediments. Russ Geol Geophys 42:351–361Google Scholar
  11. Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Lett 36, L18504. doi:10.1029/2009GL039805 CrossRefGoogle Scholar
  12. Hachikubo A, Khlystov O, Kida M, Sakagami H, Minami H, Yamashita S, Takahashi N, Shoji H, Kalmychkov G, Poort J (2012) Raman spectroscopic and calorimetric observations on natural gas hydrates with cubic structures I and II obtained from Lake Baikal. Geo-Mar Lett 32:419–426. doi:10.1007/s00367-012-0285-z CrossRefGoogle Scholar
  13. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade? Earth-Sci Rev 61:149–179. doi:10.1016/S0012-8252(02)00117-4 CrossRefGoogle Scholar
  14. Hesse R, Frape SK, Egeberg PK, Matsumoto R (2000) Stable isotope studies (Cl, O, and H) of interstitial waters from Site 997, Blake Ridge gas hydrate field, West Atlantic. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164. Ocean Drilling Program, College Station, TX, pp 129–137. doi:10.2973/odp.proc.sr.164.238.2000 Google Scholar
  15. Iversen N, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955CrossRefGoogle Scholar
  16. Kastner M, Elderfield H, Martin JB, Suess E, Kvenvolden KA, Garrison RE (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin - major constituents and strontium isotopes. In: Suess E, Von Huene R et al (eds) Proc ODP Sci Results 112. Ocean Drilling Program, College Station, TX, pp 413–440. doi:10.2973/odp.proc.sr.112.144.1990 Google Scholar
  17. Khlystov OM (2006) New findings of gas hydrates in the Baikal bottom sediments. Russ Geol Geophys 47:979–981Google Scholar
  18. Khlystov O, De Batist M, Shoji H, Hachikubo A, Nishio S, Naudts L, Poort J, Khabuev A, Belousov O, Manakov A, Kalmychkov G (2013) Gas hydrate of Lake Baikal: discovery and varieties. J Asia Earth Sci 62:162–166. doi:10.1016/j.jseaes.2012.03.009 CrossRefGoogle Scholar
  19. Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamashita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33, L24603. doi:10.1029/2006GL028296 CrossRefGoogle Scholar
  20. Klapp SA, Enzmann F, Walz P, Huthwelker T, Tuckermann J, Schwarz J-O, Pape T, Peltzer ET, Mokso R, Wangner D, Marone F, Kersten M, Bohrmann G, Kuhs WF, Stampanoni M, Brewer PG (2012) Microstructure characteristics during hydrate formation and dissociation revealed by X-ray tomographic microscopy. Geo-Mar Lett 32:555–562. doi:10.1007/s00367-012-0276-0 CrossRefGoogle Scholar
  21. Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorob’eva SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solov’ev VA, Grachev MA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Dokl Earth Sci 393A:1342–1346Google Scholar
  22. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. doi:10.1146/annurev.micro.61.080706.093130 CrossRefGoogle Scholar
  23. Krylov AA, Khlystov OM, Zemskaya TI, Minami H, Hachikubo A, Shoji H, Kida M, Pogodaeva TP, Naudts L, Poort J (2008a) Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal. Geochem Int 46:985–995. doi:10.1134/S0016702908100030 CrossRefGoogle Scholar
  24. Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Nunokawa Y, Kida M, Shoji H, Naudts L, Poort J, Pogodaeva T (2008b) First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia. Geophys Res Lett 35, L05405. doi:10.1029/2007GL032917 Google Scholar
  25. Krylov AA, Khlystov OM, Hachikubo A, Minami H, Nunokawa Y, Shoji H, Zemskaya TI, Naudts L, Pogodaeva TV, Kida M, Kalmychkov GV, Poort J (2010) Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin. Geo-Mar Lett 30:427–437. doi:10.1007/s00367-010-0190-2 CrossRefGoogle Scholar
  26. Kuzmin MI, Kalmychkov GV, Geletij VF, Gnilusha VA, Goreglyad AV, Khakhaev BN, Pevzner LA, Kavai T, Ioshida N, Duchkov AD, Ponomarchuk VA, Kontorovich AE, Bazhin NM, Mahov GA, Dyadin YA, Kuznetsov FA, Larionov EG, Manakov AY, Smolyakov BS, Mandelbaum MM, Zheleznyakov NK (1998) First find of gas hydrates in sediments of Lake Baikal (in Russian). Dokl Akad Nauk SSSR:541–543Google Scholar
  27. Kuzmin MI, Geletiy VF, Kalmychkov G, Kuznetsov FA, Larionov EG, Manakov AY, Mironov YI, Smoljakov BS, Dyadin YA, Duchkov AD, Bazin NM, Mahov GM (2000) The first discovery of the gas hydrates in the sediments of the Lake Baikal. In: Gas hydrates: challenges for the future. Ann N Y Acad Sci 912:112–115. doi:10.1111/j.1749-6632.2000.tb06764.x CrossRefGoogle Scholar
  28. Kvenvolden KA, Kastner M (1990) Gas hydrates of the Peruvian outer continental margin. In: Suess E, Von Huene R et al (eds) Proc ODP Sci Results 112. Ocean Drilling Program, College Station, TX, pp 517–526. doi:10.2973/odp.proc.sr.112.147.1990 Google Scholar
  29. Kvenvolden KA, McDonald TJ (1985) Gas hydrates of the Middle America Trench - Deep Sea Drilling Project Leg 84. In: Von Huene R, Aubouin J et al (eds) Init Repts DSDP 84. US Govt Printing Office, Washington, pp 667–682. doi:10.2973/dsdp.proc.84.123.1985 Google Scholar
  30. Lorenson TD, Collett TS (2000) Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164. Ocean Drilling Program, College Station, TX, pp 37–46. doi:10.2973/odp.proc.sr.164.212.2000 Google Scholar
  31. Maekawa T (2004) Experimental study on isotopic fractionation in water during gas hydrate formation. Geochem J 38:129–138. doi:10.2343/geochemj.38.129 CrossRefGoogle Scholar
  32. Maekawa T, Imai N (2000) Hydrogen and oxygen isotope fractionation in water during gas hydrate formation. Ann N Y Acad Sci 912:452–459. doi:10.1111/j.1749-6632.2000.tb06800.x CrossRefGoogle Scholar
  33. Manakov AY, Khlystov OM, Hachikubo A, Ogienko AG (2013) A physicochemical model for the formation of gas hydrates of different structural types in K-2 mud volcano (Kukui Canyon, Lake Baikal). Russ Geol Geophys 54:475–482. doi:10.1016/j.rgg.2013.03.009 CrossRefGoogle Scholar
  34. Matsumoto R (2000) Methane hydrate estimates from the chloride and oxygen isotopic anomalies: examples from the Blake Ridge and Nankai trough sediments. Ann N Y Acad Sci 912:39–50. doi:10.1111/j.1749-6632.2000.tb06758.x CrossRefGoogle Scholar
  35. Matsumoto R, Borowski WS (2000) Gas hydrate estimates from newly determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial waters: Leg 164, Blake Ridge. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164. Ocean Drilling Program, College Station, TX, pp 59–66. doi:10.2973/odp.proc.sr.164.206.2000 Google Scholar
  36. Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23:289–299. doi:10.1007/s00367-003-0144-z CrossRefGoogle Scholar
  37. Mazurenko LL, Matveeva TV, Prasolov EM, Shoji H, Obzhirov AI, Jin YK, Poort J, Logvina EA, Minami H, Sakagami H, Hachikubo A, Salomatin AS, Salyuk AN, Prilepskiy EB, CHAOS 2003 Scientific Team (2009) Gas hydrate forming fluids on the NE Sakhalin slope, Sea of Okhotsk. In: Long D, Lovell MA, Rees JG, Rochelle CA (eds) Sediment-hosted gas hydrates: new insights on natural and synthetic systems. Geol Soc Lond Spec Publ 319:51–72. doi:10.1144/SP319.5
  38. Milkov AV, Dickens GR, Claypool GE, Lee Y-J, Borowski WS, Torres ME, Xu W, Tomaru H, Tréhu AM, Schultheiss P (2004) Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth Planet Sci Lett 222:829–843. doi:10.1016/j.epsl.2004.03.028 CrossRefGoogle Scholar
  39. Naudts L, Khlystov O, Granin N, Chensky A, Poort J, De Batist M (2012) Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal. Geo-Mar Lett 32:395–406. doi:10.1007/s00367-012-0286-y CrossRefGoogle Scholar
  40. Nelson ST (2000) A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Commun Mass Spectrom 14:1044–1046. doi:10.1002/1097-0231(20000630)14:12<1044::AID-RCM987>3.0.CO;2-3 CrossRefGoogle Scholar
  41. Pavlova GA, Pashkina VI (1989) Distribution of halogens in interstitial waters of the Sea of Okhotsk as related to hydrate generation. Oceanology 29:329–333Google Scholar
  42. Pogodaeva TV, Zemskaya TI, Golobokova LP, Khlystov OM, Minami H, Sakagami H (2007) Chemical composition of pore waters of bottom sediments in different Baikal basins. Russ Geol Geophys 48:886–900. doi:10.1016/j.rgg.2007.02.012 CrossRefGoogle Scholar
  43. Poort J, Khlystov OM, Naudts L, Duchkov AD, Shoji H, Nishio S, De Batist M, Hachikubo A, Kida M, Minami H, Manakov AY, Kulikova MV, Krylov AA (2012) Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal. Geo-Mar Lett 32:407–417. doi:10.1007/s00367-012-0292-0 CrossRefGoogle Scholar
  44. Sakagami H, Takahashi N, Hachikubo A, Minami H, Yamashita S, Shoji H, Khlystov O, Kalmychkov G, Grachev M, De Batist M (2012) Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method. Geo-Mar Lett 32:465–472. doi:10.1007/s00367-012-0294-y CrossRefGoogle Scholar
  45. Shanks WC III, Callender E (1992) Thermal springs in Lake Baikal. Geology 20:495–497. doi:10.1130/0091-7613(1992)020<0495:TSILB>2.3.CO;2 CrossRefGoogle Scholar
  46. Shipboard Scientific Party (2003) Site 1230. In: D’Hondt SL, Jørgensen BB, Miller DJ et al (eds) Proc ODP Init Repts 201. Ocean Drilling Program, College Station, TX, pp 1–107. doi:10.2973/odp.proc.ir.201.111.2003 Google Scholar
  47. Shoji H, Khlystov O, De Batist M, Takahashi N, Grachev M (eds) (2010) Operation report of Multi-phase Gas Hydrate Project 2009, R/V G.U. Vereschagin Cruise VER-09-03. Kitami Institute of Technology, KitamiGoogle Scholar
  48. Shoji H, Khlystov O, De Batist M, Takahashi N, Grachev M (eds) (2011) Operation report of Multi-phase Gas Hydrate Project 2010, R/V G.U. Vereschagin Cruise VER-10-03. Kitami Institute of Technology, KitamiGoogle Scholar
  49. Shoji H, Khlystov O, De Batist M, Takahashi N, Grachev M (eds) (2012) Operation report of Multi-phase Gas Hydrate Project 2011, R/V G.U. Vereschagin Cruise VER-11-1. Kitami Institute of Technology, KitamiGoogle Scholar
  50. Sloan ED (1985) Shore-based laboratory experimental measurements on a gas hydrate sample recovered at Site 570. In: Von Huene R, Aubouin J et al (eds) Init Repts DSDP 84. US Govt Printing Office, Washington, pp 695–698. doi:10.2973/dsdp.proc.84.126.1985 Google Scholar
  51. Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Taylor & Francis Group, New YorkGoogle Scholar
  52. Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15. doi:10.1016/S0012-821X(99)00092-8 CrossRefGoogle Scholar
  53. Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakayama K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. AGU, Washington, DC. Geophys Monogr Ser 124:87–98Google Scholar
  54. Vanneste M, De Batist M, Golmshtok A, Kremlev A, Versteeg W (2001) Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia. Mar Geol 172:1–21. doi:10.1016/S0025-3227(00)00117-1 CrossRefGoogle Scholar
  55. Van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30:631–634. doi:10.1130/0091-7613(2002)030<0631:SMVAMS>2.0.CO;2 CrossRefGoogle Scholar
  56. Zemskaya TI, Pogodaeva TV, Shubenkova OV, Сhernitsina SM, Dagurova OP, Buryukhaev SP, Namsaraev BB, Khlystov OM, Egorov AV, Krylov AA, Kalmychkov GV (2010) Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo-Mar Lett 30:411–425. doi:10.1007/s00367-010-0199-6 CrossRefGoogle Scholar
  57. Zemskaya TI, Sitnikova TY, Kiyashko SI, Kalmychkov GV, Pogodaeva TV, Mekhanikova IV, Naumova TV, Shubenkova OV, Chernitsina SM, Kotsar OV, Chernyaev ES, Khlystov OM (2012) Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal. Geo-Mar Lett 32:437–451. doi:10.1007/s00367-012-0297-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hirotsugu Minami
    • 1
  • Akihiro Hachikubo
    • 1
  • Hirotoshi Sakagami
    • 1
  • Satoshi Yamashita
    • 1
  • Yusuke Soramoto
    • 1
  • Tsuyoshi Kotake
    • 1
  • Nobuo Takahashi
    • 1
  • Hitoshi Shoji
    • 1
  • Tatyana Pogodaeva
    • 2
  • Oleg Khlystov
    • 2
  • Andrey Khabuev
    • 2
  • Lieven Naudts
    • 3
  • Marc De Batist
    • 4
  1. 1.Kitami Institute of TechnologyHokkaidoJapan
  2. 2.Limnological InstituteSiberian Branch of the Russian Academy of SciencesIrkutskRussia
  3. 3.Management Unit of the North Sea Mathematical Models (MUMM)Royal Belgian Institute of Natural Sciences (RBINS)OostendeBelgium
  4. 4.Renard Centre of Marine Geology (RCMG)Ghent UniversityGentBelgium

Personalised recommendations