Geo-Marine Letters

, Volume 34, Issue 2–3, pp 269–280 | Cite as

Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

  • Nicolas Chevalier
  • Ioanna Bouloubassi
  • Alina Stadnitskaia
  • Marie-Hélène Taphanel
  • Jaap S. Sinninghe Damsté


Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of −57 to −136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of −43 to −133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the possible involvement of at least two distinct AOM-related microbial consortia at the inferred AOM depth zonation of G11 and G12 pockmark sediments. In both sediment cores, the δ13C profiles for most archaeal lipids suggest a direct assimilation of dissolved inorganic carbon (DIC) in addition to methane by ANMEs (chemoautotrophy); constant and highly depleted δ13C profiles for PMI:3, an archaeal lipid biomarker presumably related to ANME-2, suggest a direct assimilation of 13C-depleted methane-derived carbon via AOM (methanotrophy). Evidently, the common approach of investigating lipid biomarker contents and δ13C signatures in cold seep sediments does not suffice to precisely discriminate between the carbon assimilation mode for each ANME archaeal group and associated bacteria. Rather, this needs to be combined with further specific labelling studies including different carbon sources (methane carbon, methane-derived organic intermediates and DIC) in order to unravel the metabolic pathways of each microbial consortium involved in AOM (ANME-1 vs. ANME-2 vs. ANME-3 archaeal group and associated bacteria).


Dissolve Inorganic Carbon Carbon Isotopic Composition Methanotrophs Cold Seep Bacterial Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the HERMES project funded by the European Commission’s Framework Six Programme, EC contract no. GOCE-CT-2005-511234, by a grant from the Ministry of Education (France) to Nicolas Chevalier, and by a VENI grant from the Netherlands Organization for Scientific Research (NWO) to Alina Stadnitskaia. We thank the scientific team of the VICKING cruise, the captain and crew of the R/V Pourquoi pas?, and Catherine Pierre for sediment sampling. Also gratefully acknowledged are the technical and scientific staff of the Department of Marine Organic Biogeochemistry at NIOZ. Constructive assessments by three anonymous reviewers and the editors proved useful in improving the paper.

Supplementary material

367_2014_363_MOESM1_ESM.pdf (330 kb)
ESM 1 (PDF 329 kb)


  1. Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy J-M (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203CrossRefGoogle Scholar
  2. Andreassen K, Mienert J, Bryn P, Singh SC (2000) A double gas-hydrate related bottom simulating reflector at the Norwegian continental margin. Ann N Y Acad Sci 912:126–135CrossRefGoogle Scholar
  3. Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546CrossRefGoogle Scholar
  4. Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A 101:11111–11116CrossRefGoogle Scholar
  5. Blumenberg M, Seifert R, Nauhaus K, Pape T, Michaelis W (2005) In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl Environ Microbiol 71:4345–4351CrossRefGoogle Scholar
  6. Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann B, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227CrossRefGoogle Scholar
  7. Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  8. Bouloubassi I, Aloisi G, Pancost RD, Hopmans E, Pierre C, Sinninghe Damsté JS (2006) Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Org Geochem 37:484–500CrossRefGoogle Scholar
  9. Bouloubassi I, Nabais E, Pancost RD, Lorre A, Taphanel M-H (2009) First biomarker evidence for methane oxidation at cold seeps in the South East Atlantic (REGAB pockmark). Deep-Sea Res II 56:2239–2247CrossRefGoogle Scholar
  10. Cambon-Bonavita MA, Nadalig T, Roussel E, Delage E, Duperron S, Caprais J-C, Boetius A, Sibuet M (2009) Diversity and distribution of methane oxidizing microbial communities associated with different faunal assemblages in a giant pockmark of the Gabon continental margin. Deep-Sea Res II 56:2248–2258CrossRefGoogle Scholar
  11. Chatterjee S, Dickens GR, Bhatnagar G, Chapman WG, Dugan B, Snyder GT, Hirasaki GJ (2011) Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: a numerical modeling perspective. J Geophys Res 116:B09103. doi: 10.1029/2011JB008290 Google Scholar
  12. Chen Y, Ussler W, Haflidason H, Lepland A, Rise R, Hovland H, Hjelstuen BO (2010) Sources of methane inferred from pore water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway. Chem Geol 275:127–138CrossRefGoogle Scholar
  13. Chen Y, BianY, Haflidason H, Matsumoto R (2011) Present and past methane seepage in pockmark CN03, Nyegga, offshore mid-Norway. In: Proc 7th Int Conf Gas Hydrates (ICGH 2011), 17–21 July 2011, Edinburgh.
  14. Chevalier N, Bouloubassi I, Stadnitskaia A, Taphanel M-H, Lorre A, Sinninghe Damsté J, Pierre C (2010) Distributions and carbon isotopic compositions of lipid biomarkers in authigenic carbonate crusts from the Nordic margin (Norwegian Sea). Org Geochem 41:885–890CrossRefGoogle Scholar
  15. Chevalier N, Bouloubassi I, Birgel D, Crémière A, Taphanel M-H, Pierre C (2011) Authigenic carbonates at cold seeps in the Marmara Sea (Turkey): a lipid biomarker and stable carbon and oxygen isotope investigation. Mar Geol 288:112–121CrossRefGoogle Scholar
  16. Chevalier N, Bouloubassi I, Birgel D, Taphanel M-H, Lopez-Garcia P (2013) Microbial methane turnover at Marmara Sea cold seeps: a combined 16 rRNA and lipid biomarker investigation. Geobiology 11:55–71CrossRefGoogle Scholar
  17. Decker C, Morineaux M, Van Gaever S, Caprais JC, Lichtschlag A, Gauthier O, Andersen AC, Olu K (2012) Habitat heterogeneity influences cold-seep macrofaunal communities within and among seeps along the Norwegian margin. Part 1: macrofaunal community structure. Mar Ecol 33:205–230CrossRefGoogle Scholar
  18. Elvert M, Niemann H (2008) Occurrence of unusual steroids and hopanoids derived from aerobic methanotrophs at an active marine mud volcano. Org Geochem 39:167–177CrossRefGoogle Scholar
  19. Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight Cisotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300CrossRefGoogle Scholar
  20. Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419CrossRefGoogle Scholar
  21. Elvert M, Hopmans EC, Treude T, Boetius A, Suess E (2005) Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209CrossRefGoogle Scholar
  22. Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structure and drivers of cold seep ecosystems. Oceanography 22:92–109CrossRefGoogle Scholar
  23. Hill TM, Paull CK, Critser RB (2012) Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Mar Lett 32:73–84CrossRefGoogle Scholar
  24. Hinrichs K-U, Boetius AB (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean margin systems. Springer, Heidelberg, pp 457–477CrossRefGoogle Scholar
  25. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane consuming archaebacteria in marine sediments. Nature 398:802–805CrossRefGoogle Scholar
  26. Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701CrossRefGoogle Scholar
  27. Hjelstuen BO, Haflidason H, Sejrup H, Nygård A (2010) Sedimentary and structural control on pockmark development—evidence from the Nyegga Pockmark Field, NW European margin. Geo-Mar Lett 30:221–230CrossRefGoogle Scholar
  28. Hopmans EC, Schouten S, Pancost RD, Van der Meer MJT, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589CrossRefGoogle Scholar
  29. Hovland M (1981) Characteristics of pockmarks in the Norwegian Trench. Mar Geol 39:103–117CrossRefGoogle Scholar
  30. Hovland M, Svensen H (2006) Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Mar Geol 228:15–23CrossRefGoogle Scholar
  31. Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fosså JH, Jonsson R, Rueslåtten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206CrossRefGoogle Scholar
  32. Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041CrossRefGoogle Scholar
  33. Hustoft S, Mienert J, Bünz S, Nouzé H (2007) High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin. Mar Geol 245:89–106CrossRefGoogle Scholar
  34. Hustoft S, Bünz S, Mienert J (2010) Three-dimensional seismic analyses of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway. Basin Res 22:465–480CrossRefGoogle Scholar
  35. Ivanov M, Westbrook GK, Blinova V, Kozlova E, Mazzini A, Nouzé H, Minshull TA (2007) First sampling of gas hydrate from the Vøring Plateau. Eos Trans AGU 88:209–216CrossRefGoogle Scholar
  36. Ivanov M, Mazzini A, Blinova V, Kozlova E, Laberg J-S, Matveeva T, Taviani M, Kaskov N (2010) Seep mounds on the Southern Vøring Plateau (offshore Norway). Mar Petrol Geol 27:1235–1261CrossRefGoogle Scholar
  37. Kellermann MY, Wegner G, Elvert M, Yukio Yoshinaga M, Lin YS, Holler T, Prieto Mollar X, Knittel K, Hinrichs K-U (2012) Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109:19321–19326CrossRefGoogle Scholar
  38. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334CrossRefGoogle Scholar
  39. Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20:269–294CrossRefGoogle Scholar
  40. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479CrossRefGoogle Scholar
  41. Koga Y, Akagawa-Matsushita M, Ohga M, Nishihara M (1993) Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Syst Appl Microbiol 16:342–351CrossRefGoogle Scholar
  42. Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236CrossRefGoogle Scholar
  43. Lazar CS, Dinasquet J, L’Haridon S, Pignet P, Toffin L (2011) Distribution of anaerobic methane-oxidizing and sulfate reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Anton Leeuw 100:639–653CrossRefGoogle Scholar
  44. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362CrossRefGoogle Scholar
  45. Mazzini A, Svensen H, Hovland M, Planke S (2006) Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Mar Geol 231:89–102CrossRefGoogle Scholar
  46. Meulepas RJW, Jagersma CG, Khadem AF, Buisman CJN, Stams AJM, Lens PNL (2009a) Effect of environmental conditions on sulfate reduction with methane as electron donor by an Eckernförde Bay enrichment. Environ Sci Technol 43:6553–6559CrossRefGoogle Scholar
  47. Meulepas RJW, Jagersma CG, Gieteling J, Buisman CJN, Stams AJM, Lens PNL (2009b) Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol Bioeng 104:458–470CrossRefGoogle Scholar
  48. Mienert J, Vanneste M, Haflidason H, Bünz S (2010) Norwegian margin outer shelf cracking: a consequence of climate-induced gas hydrate dissociation? Int J Earth Sci 99:207–225. doi: 10.1007/s00531-010-0536-z CrossRefGoogle Scholar
  49. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196CrossRefGoogle Scholar
  50. Niemann H, Elvert M (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org Geochem 39:1668–1677CrossRefGoogle Scholar
  51. Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher J-P, Boetius A (2006a) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858CrossRefGoogle Scholar
  52. Niemann H, Duarte J, Hensen C, Omoregie E, Magalhães VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006b) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70:5336–5355CrossRefGoogle Scholar
  53. Omoregie EO, Niemann H, Mastalerz V, DeLange GJ, Stadnitskaia A, Mascle J, Foucher J-P, Boetius A (2009) Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar Geol 261:114–127CrossRefGoogle Scholar
  54. Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934CrossRefGoogle Scholar
  55. Orphan VJ, House CH, Hinrichs K-U, Mckeegan KD, Delong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668CrossRefGoogle Scholar
  56. Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC, Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132CrossRefGoogle Scholar
  57. Pancost RD, Bouloubassi I, Aloisi V, Sinninghe Damsté JS, the MEDINAUT Shipboard Scientific Party (2001a) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crests. Org Geochem 32:695–707CrossRefGoogle Scholar
  58. Pancost RD, Hopmans EC, Sinninghe Damsté JS, the MEDINAUT Shipboard Scientific Party (2001b) Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65:1611–1627CrossRefGoogle Scholar
  59. Pancost RD, Zhang CL, Tavacoli J, Talbot HM, Farrimond P, Schouten S, Sinninghe Damsté JS, Sassen R (2005) Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 227:48–66CrossRefGoogle Scholar
  60. Paull CK, Ussler W, Holbrook WS, Hill TM, Keaten R, Mienert J, Haflidason H, Johnson JE, Winters WJ, Lorenson TD (2008) Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Mar Lett 28:43–51CrossRefGoogle Scholar
  61. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057CrossRefGoogle Scholar
  62. Plaza-Faverola A, Bünz S, Mienert J (2010) Fluid distributions inferred from P-wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin. Mar Petrol Geol 27:46–60CrossRefGoogle Scholar
  63. Plaza-Faverola A, Bünz S, Mienert J (2011) Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet Sci Lett 305:297–308CrossRefGoogle Scholar
  64. Pohlman JW, Riedel M, Bauer JE, Canue EA, Paull CK, Lapham L, Grabowski KS, Coffin RB, Spence GD (2013) Anaerobic methane oxidation in low-organic content methane seep sediments. Geochim Cosmochim Acta 108:184–201CrossRefGoogle Scholar
  65. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513CrossRefGoogle Scholar
  66. Reiche S, Hjelstuen BO, Haflidason H (2011) High-resolution seismic stratigraphy, sedimentary processes and the origin of seabed cracks and pockmarks at Nyegga, mid-Norwegian margin. Mar Geol 284:28–39CrossRefGoogle Scholar
  67. Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP, Lanzén A, Haflidason H, Steen IH (2011) New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 78:233–243CrossRefGoogle Scholar
  68. Roalkvam I, Dahle H, Chen Y, Jørgensen SL, Haflidason H, Steen IH (2012) Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux. Front Microbiol 3:216. doi: 10.3389/fmicb.2012.00216 CrossRefGoogle Scholar
  69. Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150Google Scholar
  70. Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs KU (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184CrossRefGoogle Scholar
  71. Schouten S, Hopmans EC, Sinninghe Damste JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61CrossRefGoogle Scholar
  72. Stadnitskaia A, Muyzer G, Abbas B, Coolen MJL, Hopmans EC, Bass M, van Weering TCE, Ivanov MK, Poludetkina E, Sinninghe Damsté JS (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96CrossRefGoogle Scholar
  73. Stadnitskaia A, Nadezhkin D, Abbas B, Blinova V, Ivanov MK, Sinninghe Damsté JS (2008a) Carbonate formation by anaerobic oxidation of methane: evidence from lipid biomarker and fossil 16S rDNA. Geochim Cosmochim Acta 72:1824–1836CrossRefGoogle Scholar
  74. Stadnitskaia A, Bouloubassi I, Elvert M, Hinrichs K-U, Sinninghe Damsté JS (2008b) Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats. Org Geochem 39:1007–1014CrossRefGoogle Scholar
  75. Thiel V, Peckmann J, Reitner J, Seifert R, Wehrung P, Michaelis W (1999) Highly isotopically depleted isoprenoids – molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966CrossRefGoogle Scholar
  76. Vaular EN, Barth T, Haflidason H (2010) The geochemical characteristics of the hydrate-bound gases from the Nyegga pockmark field, Norwegian Sea. Org Geochem 41:437–444CrossRefGoogle Scholar
  77. Wakeham SG, Lewis CM, Hopmans EC, Schouten S, Sinninghe Damsté JS (2003) Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim Cosmochim Acta 67:1359–1374CrossRefGoogle Scholar
  78. Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A (2008) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10:2287–2298CrossRefGoogle Scholar
  79. Westbrook GH, Exley R, Minshull TA, Nouzé H, Gailler A, Jose T, Ker S, Plaza A (2008) High-resolution 3D seismic investigations of hydrate-bearing fluid-escape chimneys in the Nyegga region of the Vøring Plateau, Norway. In: Proc 6th Int Conf Gas Hydrates (ICGH 2008), 6–10 July 2008, Vancouver.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicolas Chevalier
    • 1
  • Ioanna Bouloubassi
    • 1
  • Alina Stadnitskaia
    • 2
  • Marie-Hélène Taphanel
    • 1
  • Jaap S. Sinninghe Damsté
    • 2
  1. 1.Laboratoire d’Océanographie et du Climat - Expérimentation et Approches Numériques (LOCEAN), CNRS UMR 7159, IPSLUniversité Pierre et Marie Curie, CC 100Paris cedex 05France
  2. 2.Department of Marine Organic BiogeochemistryNIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands

Personalised recommendations