Advertisement

Geo-Marine Letters

, Volume 34, Issue 2–3, pp 111–129 | Cite as

Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea

  • Silvia CeramicolaEmail author
  • Daniel Praeg
  • Andrea Cova
  • Daniela Accettella
  • Massimo Zecchin
Original

Abstract

Mud volcanoes (MVs) are abundant along the eastern Mediterranean subduction zones, recording mud breccia extrusion over long timescales (106 years), but to date relatively few have been recognised in the northern Ionian Sea on the Calabrian accretionary prism (CAP). In the present study, the seafloor distribution and recent activity of MVs is investigated across a 35,600 km2 sector of the CAP using a regional acoustic dataset (multibeam bathymetric and backscatter imagery, integrated with subbottom profiles) locally ground-truthed by sediment cores. A total of 54 MVs are identified across water depths of 150–2,750 m using up to four geophysical criteria: distinctive morphology, high backscatter, unstratified subbottom facies and, in one case, a hydroacoustic flare. Fourteen MVs are identified from 3–4 criteria, of which five have been previously proven by cores containing mud breccia beneath up to 1.6 m of hemipelagic sediments (Madonna dello Ionio MVs 1–3, Pythagoras MV and the newly named Sartori MV), while nine others are identified for the first time (Athena, Catanzaro, Cerere, Diana, Giunone, Minerva, ‘right foot’, Venere 1 and 2). Forty other as yet unnamed MVs are inferred from 1–2 geophysical criteria (three from distinctive morphology alone). All but one possible MV lie on the inner plateau of the CAP, landwards of the Calabrian Escarpment in a zone up to 120 km wide that includes the inner pre-Messinian wedge and the fore-arc basins, where they are interpreted to record the ascent from depth of overpressured fluids that interacted with tectonic structures and with evaporitic or shale seals within the fore-arc basins. The rise of fluids may have been triggered by post-Messinian out-of-sequence tectonism that affected the entire pre-Messinian prism, but Plio-Quaternary sedimentation rates and depositional styles support the inference that significant mud volcanism has taken place only on the inner plateau. Sedimentation rates across the CAP applied to a 12 khz sonar detection depth of 225 cm imply that all MVs with backscatter signatures (50 of 54) have erupted mud breccias within the last 56 ka, and within the last 12.5 ka in the fore-arc basins. Ages of eruption estimated from the depth of cored mud breccias at five MVs, and a seismo-stratigraphic relationship at a sixth, indicate episodes at the last glacial maximum ca. 20 ka BP and during the postglacial period. Eruptive episodes within the Calabrian MV province constitute recurrent geohazards, separated by longer periods of quiescent (subdued) fluid seepage that are likely to support gas hydrate formation and chemosynthetic ecosystems.

Keywords

Last Glacial Maximum Accretionary Prism High Backscatter Hemipelagic Sediment Mediterranean Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The seafloor dynamics of the CAP presented in this paper have been examined within the context of four projects: the EC integrated project HERMES (Hotspot Ecosystem Research along the Margins of European Seas), the EC Marie Curie project HYDRAMED (Assessment of Gas Hydrates in the Mediterranean Sea), and the Italian projects MAGIC (MArine Geohazards along the Italian Coasts), funded by the Civil Protection Department, and Ritmare (La ricerca italiana per il mare) funded by the Ministry of University and Research (MIUR). Data were acquired during two OGS-funded campaigns of the R/V OGS Explora: HERMES-HYDRAMED in 2005, and MAGIC in 2009. Cores were acquired during HERMES campaigns of the FS Meteor in 2006 and the R/V Pourquoi pas? in 2007. We thank the chief scientists Andre Freiwald and Catherine Pierre, along with the ships’ crews and scientific parties of all campaigns, Riccardo Ramella for facilitating the two OGS campaigns, Paolo Diviacco and Jacques Centonze for help in digital processing of subbottom data using Kingdom Suite (provided via an academic grant), and Edy Forlin for processing the Catanzaro MV DEM. Also gratefully acknowledged are Emmanuelle Ducassou for helpful discussions regarding the dating of Mediterranean cores and Renata Lucchi for discussions of core CALA 21. Constructive comments by Jean Mascle, an anonymous reviewer and the editors proved useful in improving the article.

References

  1. Ambrosetti P, Bosi C, Carraro F, Ciaranfi N, Panizza M, Papani G, Vezzani L, Zanferrari A (1983) Neotectonic map of Italy, scale 1:500,000 (sheet 6). Consiglio Nazionale delle Ricerche; Quaderni della Ricerca Scientifica vol 4, no 114Google Scholar
  2. Amodio Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Picarretta G, Russo M, Scandone P, Zanettin-Lorenzoni E, Zuppetta A (1976) L’Arco Calabro-Peloritano nell’orogene Appenninico–Maghrebide. Mem Soc Geol Ital 17:1–60Google Scholar
  3. Barbieri F, Morlotti E, Poerio L, Raffi I, Torelli L (1982) Dati geologici preliminari sul bacino di Crotone-Spartivento (Mar Ionio). Acta Nat Ateneo Parmense 18:141–155Google Scholar
  4. Belderson RH, Kenyon NH, Strike AH (1978) Local submarine salt-karst formation on the Hellenic Outer Ridge, eastern Mediterranean. Geology 6:716–720CrossRefGoogle Scholar
  5. Brown KM, Westbrook G (1988) Mud diapirism and subcretion in the Barbados ridge complex. Tectonics 7:613–640CrossRefGoogle Scholar
  6. Cacho I, Shackleton N, Elderfield H, Sierro FJ, Grimalt JO (2005) Glacial rapid variability in deepwater temperature and δ18O from the Western Mediterranean Sea. Quat Sci Rev 25:3294–3311CrossRefGoogle Scholar
  7. Camerlenghi A, Cita MB, Hieke W, Ricchiuto T (1992) Geological evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Earth Planet Sci Let 109:493–506CrossRefGoogle Scholar
  8. Camerlenghi A, Cita MB, Della Vedova B, Fusi N, Mirabile L, Pellis G (1995) Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Mar Geophys Res 17:115–141CrossRefGoogle Scholar
  9. Capozzi R, Artoni A, Torelli L, Lorenzini S, Oppo D, Mussoni P, Polonia A (2012) Neogene to Quaternary tectonics and mud diapirism in the Gulf of Squillace (Crotone-Spartivento Basin, Calabrian Arc, Italy). Mar Petrol Geol 35:219–234CrossRefGoogle Scholar
  10. Ceramicola S, Praeg D (2007) Una nuova provincia di vulcani di fango scoperta nel Mar Ionio. GeoItalia 19:18–22Google Scholar
  11. Ceramicola S, Praeg D, the OGS Explora Scientific Party (2006) Mud volcanoes discovered on the Calabrian Arc: preliminary results from the HERMES-HYDRAMED IONIO 2005 campaign. CIESM Worksh Monogr 29:35–39Google Scholar
  12. Ceramicola S, Praeg D, Coste M, Forlin E, Cova A, Colizza E, Critelli S (2014) Submarine mass-movements along the slopes of the active Ionian continental margins and their consequences for marine geohazards (Mediterranean Sea). In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Bonnevie Harbitz C (eds) Submarine mass movements and their consequences, 6th International Symposium. Advances in Natural and Technological Hazards Research, vol 37. Springer, Heidelberg, pp 295–306CrossRefGoogle Scholar
  13. Cernobori L, Hirn A, McBride JH, Nicolich R, Petronio L, Romanelli M, STREAMERS/PROFILES Working Groups (1996) Crustal image of the Ionian basin and its Calabrian margins. Tectonophysics 264:175–189CrossRefGoogle Scholar
  14. Chamot-Rooke N, Rabaute A, Kreemer C (2005a) Western Mediterranean Ridge mud belt correlates with active shear strain at the prism-backstop geological contact. Geology 33:861–864CrossRefGoogle Scholar
  15. Chamot-Rooke N, Rangin C, Le Pichon X, DOTMED Working Group (2005b) DOTMED: a synthesis of deep marine data in the Eastern Mediterranean. Mém Soc Géol France ns 177, CD-ROMGoogle Scholar
  16. Cita MB, Ryan WBF, Paggi L (1981) Prometheus mud breccia. An example of shale diapirism in the western Mediterranean Ridge. Ann Géol Pays hélléniques 30:543–570Google Scholar
  17. Cita MB, Camerlenghi A, Erba E, McCoy FW, Castradori D, Cazzani A, Guasti G, Giambastiani M, Lucchi R, Nolli V, Pezzi G, Redaelli M, Rizzi E, Torricelli S, Violanti D (1989) Discovery of mud diapirism in the Mediterranean Ridge. A preliminary report. Boll Soc Geol Ital 108:537–543Google Scholar
  18. Cita MB, Erba E, Lucchi R, Pott M, van der Meeer R, Nieto L (1996) Stratigraphy and sedimentation in the Mediterranean Ridge diapiric belt. Mar Geol 132:131–150CrossRefGoogle Scholar
  19. Cova A, Ceramicola S, Caburlotto A, Sormani L, Tomini I, Zgur F (2009) PROGETTO MAGIC – Acquisizione Dati APRILE 2009, Rapporto di Fine Campagna. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS Internal Report 2009/113 RIMA 17 ADEST. http://www2.ogs.trieste.it:8585/biblioteca/
  20. Cramp A, O’Sullivan G (1999) Neogene sapropels in the Mediterranean: a review. Mar Geol 153:11–28CrossRefGoogle Scholar
  21. Cronin BT, Ivanov MK, Limonov AF, Egorov A, Akhmanov GG, Akhmetjanov AM, Kozlova E, Shipboard Scientific Party TTR-5 (1997) New discoveries of mud volcanoes on the eastern Mediterranean Ridge. J Geol Soc Lond 154:173–182CrossRefGoogle Scholar
  22. De Lange GJ, Thomson J, Reitz A, Slomp CP, Principato MS, Erba E, Corselli C (2008) Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nature Geosci 1:606–610CrossRefGoogle Scholar
  23. Deville E, Battani A, Griboulard R, Guerlais S, Herbin JP, Houzay JP, Muller C, Prinzhofer A (2003) The origin and processes of mud volcanism: new insights from Trinidad. In: Van Rensbergen P, Hillis RR, Maltman AJ, Morley CK (eds) Subsurface sediment mobilization. Geol Soc Lond Spec Publ 216:475–490CrossRefGoogle Scholar
  24. Dimitrov LI (2002) Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76CrossRefGoogle Scholar
  25. Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010) Widespread active seepage activity on the Nile deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar Geol 275:1–19CrossRefGoogle Scholar
  26. Etiope G, Feyzullayev A, Baciu CL (2009) Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar Petrol Geol 26:333–344CrossRefGoogle Scholar
  27. Faccenna C, Becker TW, Lucente FP, Jolivet L, Rossetti F (2001) History of subduction and back-arc extension in the central Mediterranean. Geophys J Int 145:809–820CrossRefGoogle Scholar
  28. Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012. doi: 10.1029/2002TC001488 CrossRefGoogle Scholar
  29. Faccenna C, Molin P, Orecchio B, Olivetti V, Bellier O, Funiciello F, Minelli L, Piromallo C, Billi A (2011) Topography of the Calabria subduction zone (southern Italy): clues for the origin of Mt. Etna. Tectonics 30, TC1003. doi: 10.1029/2010TC002694 CrossRefGoogle Scholar
  30. Feseker T, Brown KR, Blanchet C, Scholz F, Nuzzo M, Reitz A, Schmidt M, Hensen C (2010) Active mud volcanoes on the upper slope of the western Nile deep-sea fan—first results from the P362/2 cruise of R/V Poseidon. Geo-Mar Lett 30(3/4):169–186. doi: 10.1007/s00367-010-0192-0 CrossRefGoogle Scholar
  31. Finetti I (1982) Structure, stratigraphy and evolution of Central Mediterranean. Boll Geofis Teor Appl 24:247–312Google Scholar
  32. Fontugne M, Paterne M, Calvert S, Murat A, Guichard F, Arnold M (1989) Adriatic deepwater formation during the Holocene. Implication for the reoxygenation of the deep eastern Mediterranean Sea. Palaeoceanography 4:199–206CrossRefGoogle Scholar
  33. Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structure and drivers of cold seep ecosystems. Oceanography 22:92–109CrossRefGoogle Scholar
  34. Fusi N, Kenyon NH (1996) Distribution of mud diapirism and other geological structures from long-range sidescan sonar (GLORIA) data, in the Eastern Mediterranean Sea. Mar Geol 132:21–38CrossRefGoogle Scholar
  35. Fusi N, Savini A, Corselli C (2006) Evidence of mud diapirism and coral colonies in the Ionian Sea (Central Mediterranean) from high resolution chirp sonar survey. Ann Geophys 49:751–765Google Scholar
  36. Gennesseaux M, Winnock E (1993) Thickness of Mediterranean Plio-Quaternary sediments. Intergovernmental Oceanographic Commission (UNESCO), International Bathymetric Chart of the Mediterranean, Geological-Geophysical Series, IBCM-PQ, scale 1:5,000,000, St. Petersburg, RussiaGoogle Scholar
  37. Goes S, Giardini D, Jenny S, Hollenstein C, Kahle H-G, Geiger A (2004) A recent tectonic reorganization in the south-central Mediterranean. Earth Planet Sci Lett 226:335–345. doi: 10.1016/j.epsl.2004.07.038 CrossRefGoogle Scholar
  38. Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 298:259–269CrossRefGoogle Scholar
  39. Guillaume B, Funicello F, Faccenna C, Martinod J, Olivetti V (2010) Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian slab. Geology 38(9):819–822CrossRefGoogle Scholar
  40. Gutscher M-A, Roger J, Baptista M-A, Miranda JM, Tinti S (2006) Source of the 1693 Catania earthquake and tsunami (southern Italy): new evidence from tsunami modeling of a locked subduction fault plane. Geophys Res Lett 33, L08309. doi: 10.1029/2005GL025442 CrossRefGoogle Scholar
  41. Hamilton EL (1980) Geoacoustic modeling of the sea floor. J Acoust Soc Am 68(5):1313–1340CrossRefGoogle Scholar
  42. Hieke W (2004) The August 27, 1886 earthquake in Messenia (Peloponnesus) and reported flames over the Ionian Sea—a Mediterranean Ridge gas escape event? Mar Geol 207:259–265CrossRefGoogle Scholar
  43. Higgins GE, Saunders JB (1974) Mud volcanoes - their nature and origin: contribution to the geology and paleobiology of the Caribbean and adjacent areas. Verh Naturforsch Ges Basel 84:101–152Google Scholar
  44. Huguen C, Mascle J, Chaumillon E, Kopf A, Woodside J, Zietter T (2004) Structural setting and control of mud volcanoes from the central Mediterranean ridge (Eastern Mediterranean). Mar Geol 209:245–263CrossRefGoogle Scholar
  45. Huguen C, Mascle J, Woodside J, Zitter T, Foucher JP (2005) Mud volcanoes and mud domes of the Central Mediterranean Ridge: near-bottom and in situ observations. Deep Sea Res I 52:1911–1931CrossRefGoogle Scholar
  46. Huguen C, Chamot-Rooke N, Loubrieu B, Mascle J (2006) Morphology of a pre-collisional, salt-bearing, accretionary complex: the Mediterranean Ridge (Eastern Mediterranean). Mar Geophys Res 27:61–75CrossRefGoogle Scholar
  47. Ivanov MK, Limonov AF, TjCE VW (1996) Comparative characteristics of the Black Sea and Mediterranean Sea mud volcanoes. Mar Geol 132:253–271CrossRefGoogle Scholar
  48. Jackson DR, Winebrenner DP, Ishimaru A (1986) Application of the composite roughness model to high-frequency bottom backscattering. J Acoust Soc Am 79(5):1410–1422CrossRefGoogle Scholar
  49. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. GSA Bull 89:591–604CrossRefGoogle Scholar
  50. Kopf A (2002) Significance of mud volcanism. Rev Geophys 40:1–51CrossRefGoogle Scholar
  51. Kopf A, Robertson HF, Clennell MB, Flecker R (1998) Mechanisms of mud extrusion on the Mediterranean Ridge Accretionary Complex. Geo-Mar Lett 18:97–114. doi: 10.1007/s003670050058 CrossRefGoogle Scholar
  52. León R, Somoza L, Medialdea T, González FJ, Díaz-del-Río V, Fernández-Puga MC, Maestro A, Mata MP (2007) Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz: from mud flows to carbonate precipitates. Geo-Mar Lett 27(2/4):237–247. doi: 10.1007/s00367-007-0074-2 CrossRefGoogle Scholar
  53. León R, Somoza L, Medialdea T, Vázquez JT, González FJ, López-González N, Casas D, Mata MP, Fernández-Puga MC, Giménez-Moreno CJ, Díaz-del-Río V (2012) New discoveries of mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cádiz): morpho-structural characterization. Geo-Mar Lett 32(5/6):473–488. doi: 10.1007/s00367-012-0275-1 CrossRefGoogle Scholar
  54. Limonov AF, Woodside JM, Cita MB, Ivanov MK (1996) The Mediterranean Ridge and related mud diapirism: a background. Mar Geol 131:7–19CrossRefGoogle Scholar
  55. Lykousis V, Alexandri S, Woodside J, de Lange G, Dahlmann A, Perissoratis C, Heeschen K, Ioakim C, Sakellariou D, Nomikou P, Rousakis G, Casas D, Ballas D, Ercilla G (2009) Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Mar Petrol Geol 26:854–872CrossRefGoogle Scholar
  56. Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245CrossRefGoogle Scholar
  57. Martinelli G, Judd A (2004) Mud volcanoes of Italy. Geol J 39:49–61CrossRefGoogle Scholar
  58. Mattei M, Cifelli F, D’Agostino N (2007) The evolution of the Calabrian Arc: evidence from paleomagnetic and GPS observations. Earth Planet Sci Lett 263:259–274CrossRefGoogle Scholar
  59. Medimap Group (2008) Morpho-bathymetry of the Mediterranean Sea. CIESM/Ifremer Spec Publ, Atlases and Maps, scale 1/3000 000Google Scholar
  60. Minelli L, Faccenna C (2010) Evolution of the Calabrian accretionary wedge (central Mediterranean). Tectonics 29, TC4004. doi: 10.1029/2009TC002562 CrossRefGoogle Scholar
  61. Mitchell NC (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thicknesses with GLORIA sidescan sonar. J Geophys Res 98(B12):22477–22493CrossRefGoogle Scholar
  62. Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30(2):113–135CrossRefGoogle Scholar
  63. Morelli D, Cuppari A, Colizza E, Fanucci F (2011) Geomorphic setting and geohazard-related features along the Ionian Calabrian margin between Capo Spartivento and Capo Rizzuto (Italy). Mar Geophys Res 32:139–149. doi: 10.1007/s11001-011-9130-4 CrossRefGoogle Scholar
  64. Morlotti E, Sartori R, Torelli L, Barbieri F, Raffi I (1982) Chaotic deposits from the external Calabrian Arc (Ionian Sea, eastern Mediterranean). Mem Soc Geol Ital 24:261–275Google Scholar
  65. Narcisi B, Vezzoli L (1999) Quaternary stratigraphy of distal tephra layers in the Mediterranean—an overview. Glob Planet Change 21:31–50CrossRefGoogle Scholar
  66. Nuzzo M, Elvert M, Schmidt M, Scholz F, Reitz A, Hinrichs K-U, Hensen C (2012) Impact of hot fluid advection on hydrocarbon gas production and seepage in mud volcano sediments of thick Cenozoic deltas. Earth Planet Sci Lett 341(344):139–157CrossRefGoogle Scholar
  67. Panieri G, Polonia A, Lucchi RG, Zironi S, Capotondi L, Negri A, Torelli L (2013) Mud volcanoes along the inner deformation front of the Calabrian Arc accretionary wedge (Ionian Sea). Mar Geol 336:84–98CrossRefGoogle Scholar
  68. Pape T, Kasten S, Zabel M, Bahr A, Abegg F, Hohnberg H-J, Bohrmann G (2010) Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo-Mar Lett 30(3/4):187–206. doi: 10.1007/s00367-010-0197-8 CrossRefGoogle Scholar
  69. Patacca E, Sartori R, Scandone P (1990) Tyrrhenian Basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem Soc Geol Ital 45:425–451Google Scholar
  70. Paterne M, Guichard F, Duplessy JC, Siani G, Sulpizio R, Labeyrie J (2008) A 90,000–200,000 yrs marine tephra record of Italian volcanic activity in the Central Mediterranean Sea. J Volcanol Geotherm Res 177:187–196CrossRefGoogle Scholar
  71. Pérez-García C, Berndt C, Klaeschen D, Mienert J, Haffert L, Depreiter D, Haeckel M (2011) Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cadiz. J Geophys Res 116, B05101. doi: 10.1029/2010JB008061 Google Scholar
  72. Planke S, Svensen H, Hovland M, Banks DA, Jamtveit B (2003) Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar Lett 23(3/4):258–268. doi: 10.1007/s00367-003-0152-z CrossRefGoogle Scholar
  73. Polonia A, Torelli L, Mussoni P, Gasperini L, Artoni A, Klaeschen D (2011) The Calabrian Arc subduction complex in the Ionian Sea: regional architecture, active deformation and seismic hazard. Tectonics 30, TC5018. doi: 10.1029/2010TC002821 CrossRefGoogle Scholar
  74. Praeg D, Ceramicola S, the OGS Explora Scientific Party (2007) Cruise Report R/V OGS Explora, Campaign HERMES-HYDRAMED IONIO 2005, Calabrian Arc, Northern Ionian Sea. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS Internal Report 2008/52 RIMA 11 GEMAR. http://www2.ogs.trieste.it:8585/biblioteca/
  75. Praeg D, Ceramicola S, Barbieri R, Unnithan V, Wardell N (2009) Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea. Mar Petrol Geol 26:1849–1865CrossRefGoogle Scholar
  76. Praeg D, Geletti R, Wardell N, Unnithan V, Mascle J, Migeon S, Camerlenghi A (2011) The Mediterranean Sea: a natural laboratory to study gas hydrate dynamics? In: Proc 7th Int Conf Gas Hydrates (ICGH7 2011), 17–21 July 2011, Edinburgh, Paper 00322. http://www.pet.hw.ac.uk/icgh7/
  77. Rabaute A, Chamot-Rooke N (2007) Quantitative mapping of active mud volcanism at the western Mediterranean Ridge-backstop contact. Mar Geophys Res 28:271–293CrossRefGoogle Scholar
  78. Reitz MA, Seeber L (2012) Arc-parallel strain in a short rollback-subduction system: the structural evolution of the Crotone basin (northeastern Calabria, southern Italy). Tectonics 31, TC4017. doi: 10.1029/2011TC003031 CrossRefGoogle Scholar
  79. Robertson AHF, Kopf A (1998) Tectonic setting and processes of mud volcanism on the Mediterranean Ridge accretionary complex: evidence from leg 160. In: Robertson AHF, Emeis KC, Richter C, Camerlenghi A (eds) Proc Ocean Drill Prog, Sci Results 160, pp 665–680Google Scholar
  80. Robertson A, Ocean Drilling Program Leg 160 Scientific Party (1996) Mud volcanism on the Mediterranean Ridge; initial results of Ocean Drilling Program Leg 160. Geology 24:239–242CrossRefGoogle Scholar
  81. Rossi S, Sartori R (1981) A seismic reflection study of the external Calabrian Arc in the northern Ionian Sea (eastern Mediterranean). Mar Geophys Res 4:403–426CrossRefGoogle Scholar
  82. Rossignol-Strick M, Paterne M (1999) A synthetic pollen record of the eastern Mediterranean sapropels of the last 1 Ma: implications for the time-scale and formation of sapropels. Mar Geol 153:221–237CrossRefGoogle Scholar
  83. Sanvoisin R, D’Onofrio S, Lucchi R, Violanti D, Castradori D (1993) 1 Ma Paleoclimatic record from the Eastern Mediterranean - Marflux Project: the first results of micropaleontological and sedimentological investigation of a long piston core from the Calabrian Ridge. Il Quaternario 6:169–188Google Scholar
  84. Sartori R (2003) The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere. Episodes 26:217–221Google Scholar
  85. Somoza L, Medialdea T, León R, Ercilla G, Vázquez JT, Farran M, Hernández-Molina FJ, Gonzáles J, Juan C, Fernández-Puga MC (2012) Structure of mud volcano systems and pockmarks in the region of the Ceuta Contourite Depositional System (Western Alborán Sea). Mar Geol 332(334):4–26CrossRefGoogle Scholar
  86. Staffini F, Spezzaferri S, Aghib F (1993) Mud diapirs of the Mediterranean Ridge: sedimentological and micropaleontological study of the mud breccia. Riv Ital Paleontol Stratigr 99:225–254Google Scholar
  87. van Dijk JP (1994) Late Neogene kinematics of intra-arc oblique shear zones: the Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean). Tectonics 13(5):1201–1230CrossRefGoogle Scholar
  88. Volgin AV, Woodside JM (1996) Sidescan sonar images of mud volcanoes from the Mediterranean Ridge: possible causes of variations in backscatter intensity. Mar Geol 132:39–53CrossRefGoogle Scholar
  89. Westaway R (1993) Quaternary uplift of Southern Italy. J Geophys Res 98:21741–21772CrossRefGoogle Scholar
  90. Zecchin M, Ceramicola S, Gordini E, Deponte M, Critelli S (2011) Cliff overstep model and variability in the geometry of transgressive erosional surfaces in high-gradient shelves: the case of the Ionian Calabrian margin (southern Italy). Mar Geol 281:43–58CrossRefGoogle Scholar
  91. Zecchin M, Caffau M, Civile D, Critelli S, Di Stefano A, Maniscalco R, Muto F, Sturiale G, Roda C (2012) The Plio-Pleistocene evolution of the Crotone Basin (southern Italy): interplay between sedimentation, tectonics and eustasy in the frame of Calabrian Arc migration. Earth-Sci Rev 115:273–303CrossRefGoogle Scholar
  92. Zitter TAC, Huguen C, Woodside JM (2005) Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep Sea Res I 52:457–475CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Silvia Ceramicola
    • 1
    Email author
  • Daniel Praeg
    • 1
  • Andrea Cova
    • 1
  • Daniela Accettella
    • 1
  • Massimo Zecchin
    • 1
  1. 1.OGS, Istituto Nazionale di Oceanografia e di Geofisica SperimentaleTriesteItaly

Personalised recommendations