Geo-Marine Letters

, Volume 33, Issue 5, pp 405–418 | Cite as

Limitation of fluid flow at the Nankai Trough megasplay fault zone

  • Sebastian B. Hammerschmidt
  • Earl E. Davis
  • Andre Hüpers
  • Achim Kopf


Along the Nankai Trough megasplay fault off SE Japan, the effect of fluid migration on subduction-related seismogenesis and tsunamigenesis remains unresolved. To investigate the existence and role of fluid flow, a SmartPlug borehole observatory was installed at Site C0010 of the Integrated Ocean Drilling Program NanTroSEIZE Kumano transect, where a shallow branch of the fault was intersected and in situ fluid pressure monitored from August 2009 to November 2010. The tidal signal in the formation showed no phase shift relative to seafloor loading. The attenuation of 0.73 reflects the loading efficiency accurately, and enabled calculation of a formation compressibility of 1.0×10–9 Pa–1 and a hydraulic diffusivity (HD) of 1.5×10–5 m2 s–1. A similar HD is predicted by a tidal response model based on SmartPlug pressure data. By contrast, permeability measurements on intact samples from Site C0004 SE along-strike the splay fault and from Site C0006 in the frontal thrust zone were found to be similar and one magnitude smaller respectively, despite having a higher porosity. This is explained by the presence of fractures, which are covered by the larger scale of in situ measurements at Site C0010. Consequently, HD can be set to be at least 10–5 m2 s–1 for the splay fault and 10–6 m2 s–1 for the frontal thrust fault zone. Considering recent publications makes fluid flow at the splay fault unlikely, despite the presence of fractures. If the influence of fractures is limited, then processes leading to fault weakening may be enhanced.


Fault Zone Accretionary Prism Nankai Trough Hydraulic Diffusivity Splay Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank the whole crew onboard D/V Chikyu for their excellent work during IODP Exps. 319 and 332, as well as Heinrich Villinger for his help and fruitful discussions. Robert Macdonald and Robert Meldrum provided key assistance with instrument design and construction, and Alison LaBonte and Martin Heesemann were incredibly helpful with software and programming issues. Special thanks go to the German Science Foundation (DFG grants KO2108/8-1 and KO2108/15-1) and the Geological Survey of Canada for funding this project, and to the Integrated Ocean Drilling Program (IODP) for providing the data. We gratefully acknowledge Frank Ohnemueller and Antonia Hofmann, as well as an anonymous reviewer and the journal editors for useful comments which helped improve the paper.

Supplementary material

367_2013_337_MOESM1_ESM.pdf (621 kb)
ESM 1 (PDF 620 KB)


  1. Adatia RH, Maltman AJ (2004) Initial permeability determination on sediments from the Nankai Trough Accretionary Prism, ODP Sites 1173 and 1174. Proc ODP Sci Res 190/196. doi: 10.2973/
  2. Ando M (1975) Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics 27:119–140CrossRefGoogle Scholar
  3. Andrews DJ (2002) A fault constitutive relation accounting for thermal pressurization of pore fluid. J Geophys Res 107:2363. doi: 10.1029/2002JB001942 CrossRefGoogle Scholar
  4. Ashi J, Si K, Morita S, Tsunogai U, Goto S, Kojima S, Okamoto T, Asai S, Utsumi M (2002) Structure and cold seep of the Nankai accretionary prism off Kumano. Outline of the off Kumano survey during YK01–04 Leg 2 Cruise. J Deep Sea Res 20:1–8Google Scholar
  5. Becker K, Davis EE (2005) A review of CORK designs and operations during the Ocean Drilling Program. In: Fisher AT, Urabe T, Klaus A (eds) Expedition 301 scientists, Proc IODP. doi: 10.2204/iodp.proc.301.104.2005
  6. Becker K, Fisher AT, Davis EE (1997) The CORK experiment in Hole 949C: long-term observations of pressure and temperature in the Barbados accretionary prism. Proc ODP 156:247–252Google Scholar
  7. Boutareaud S, Wibberley CAJ, Fabbri O, Shimamoto T (2008) Permeability structure and co-seismic thermal pressurization on fault branches: insights from the Usukidani Fault, Japan. In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) The internal structure of fault zones: implications for mechanical and fluid-flow properties. Geol Soc Lond Spec Publ 299:341–361Google Scholar
  8. Boutt DF, Saffer D, Doan M-L, Lin W, Ito T, Kano Y, Flemings P, McNeill LC, Byrne T, Hayman NW, Moe KT (2012) Scale dependence of in-situ permeability measurements in the Nankai accretionary prism: the role of fractures. Geophys Res Lett 39, L07302. doi: 10.1029/2012GL051216 CrossRefGoogle Scholar
  9. Byrne DE, Davis DM, Sykes LR (1988) Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7:833–857CrossRefGoogle Scholar
  10. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028CrossRefGoogle Scholar
  11. Cummins PR, Hori T, Kaneda Y (2001) Splay fault and megathrust earthquake slip in the Nankai Trough. Earth Planets Space 53:243–248Google Scholar
  12. Davis EE, Becker K (2007) On the fidelity of “CORK” Borehole Hydrologic Observatory pressure records. Sci Drill 5:54–59Google Scholar
  13. Davis EE, Villinger HW (2006) Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: CORK monitoring at ODP Sites 1253 and 1255. Earth Planet Sci Lett 245:232–244CrossRefGoogle Scholar
  14. Davis EE, Wang K, Becker K, Thomson RE (2000) Formation-scale hydraulic and mechanical properties of oceanic crust inferred from pore pressure response to periodic seafloor loading. J Geophys Res 105:13423–13435CrossRefGoogle Scholar
  15. Davis EE, Becker K, Wang K, Kinoshita M (2009) Co-seismic and post-seismic pore-fluid pressure changes in the Philippine Sea plate and Nankai decollement in response to a seismogenic strain event off Kii Peninsula, Japan. Earth Planets Space 61:649–657Google Scholar
  16. Dugan B, Daigle H (2011) Data report: permeability, compressibility, stress state, and grain size of shallow sediments from Sites C0004, C0006, C0007, and C0008 of the Nankai accretionary complex. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.314315316.211.2011 Google Scholar
  17. Ekinci MK, Likos WJ, Guo J, Underwood MB (2011) Permeability of mud(stone) samples from IODP Sites C0004, C0006, C0007, and C0008 Nankai Trough Seismogenic Zone Experiment. AGU Fall Meeting 2011, San Francisco, abstract #1190471Google Scholar
  18. Expedition 314 Scientists (2009) Expedition 314 Site C0003. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.314315316.115.2009 Google Scholar
  19. Expedition 316 Scientists (2009a) Expedition 316 Site C0004. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.314315316.133.2009 Google Scholar
  20. Expedition 316 Scientists (2009b) Expedition 316 Site C0006. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.314315316.134.2009 Google Scholar
  21. Expedition 319 Scientists (2010) Site C0010. In: Saffer D, McNeill L, Byrne T, Araki E, Toczko S, Eguchi N, Takahashi K (eds) Expedition 319 Scientists, Proc IODP 319. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.319.104.2010 Google Scholar
  22. Expedition 332 Scientists (2011) Expedition 332 summary. In: Kopf A, Araki E, Toczko S (eds) Expedition 332 Scientists, Proc IODP 332. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.332.101.2011 Google Scholar
  23. Faulkner DR, Mitchell TM, Rutter EH, Cembrano J (2008) On the structure and mechanical properties of large strike-slip faults. In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) The internal structure of fault zones: implications for mechanical and fluid-flow properties. Geol Soc Lond Spec Publ 299:139–150Google Scholar
  24. Fukao Y (1979) Tsunami earthquakes and subduction processes near deep-sea trenches. J Geophys Res 84:2303–2314CrossRefGoogle Scholar
  25. Gamage K, Screaton E (2003) Data report: permeability, compressibility, and friction coefficient measurements under confining pressure and strain, Leg 190, Nankai Trough. Proc ODP Sci Res 190(196):1–22Google Scholar
  26. Garagash DI, Rudnicki JW (2003) Shear heating of a fluid-saturated slip-weakening dilatant fault zone: 2. Quasi-drained regime. J Geophys Res 108:2472. doi: 10.1029/2002JB002218 CrossRefGoogle Scholar
  27. Gartling DK (1977) Convective heat transfer analysis by the finite element method. Comput Methods Appl Mech Eng 12:365–382CrossRefGoogle Scholar
  28. Gieskes JM, Toshitaka G, Kastner M (1993) Major and minor element geochemistry of interstitial waters of Site 808, Nankai Trough: an overview. In: Hill IA, Taira A, Firth JV et al (eds) Proc ODP Sci Results 131:387–396Google Scholar
  29. Guo J, Underwood MB, Likos WJ, Saffer DM (2013) Apparent overconsolidation of mudstones in the Kumano Basin of southwest Japan: implications for fluid pressure and fluid flow within a forearc setting. Geochem Geophys Geosyst 14:1023–1038. doi: 10.1029/2012GC004204 Google Scholar
  30. Hamamoto H, Yamano M, Goto S, Kinoshita M, Fujino K, Wang K (2011) Heat flow distribution and thermal structure of the Nankai subduction zone off the Kii Peninsula. Geochem Geophys Geosyst 12:Q0AD20. doi: 10.1029/2011GC003623 CrossRefGoogle Scholar
  31. Hammerschmidt S, Davis EE, Kopf A (2013) Fluid pressure and temperature transients detected at the Nankai Trough Megasplay Fault: results from the SmartPlug borehole observatory. Tectonophysics 600:116–133. doi: 10.1016/j.tecto.2013.02.010 Google Scholar
  32. Hirono T, Ujiie K, Ishikawa T, Mishima T, Hamada Y, Tanimizu M, Soh W, Kinoshita M (2009) Estimation of temperature rise in a shallow slip zone of the megasplay fault in the Nankai Trough. Tectonophysics 478:215–220CrossRefGoogle Scholar
  33. Hsieh PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from Earth tide analysis. Water Resour Res 23:1824–1832CrossRefGoogle Scholar
  34. Ichinose GA, Thio HK, Somerville PG, Sato T, Ishii T (2003) Rupture process of the 1944 Tonankai earthquake (M s 8.1) from the inversion of teleseismic and regional seismograms. J Geophys Res 108:2497CrossRefGoogle Scholar
  35. Ikari MJ, Saffer DM (2012) Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism. Mar Geol 295/298:1–13CrossRefGoogle Scholar
  36. Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone. Geophys Res Lett 36, L20313. doi: 10.1029/2009GL040009 CrossRefGoogle Scholar
  37. Kastner M, Becker K, Davis EE, Fisher AT, Jannasch HW, Solomon EA, Wheat G (2006) New insights into the hydrogeology of the oceanic crust through long-term monitoring. Oceanography 19:46–57CrossRefGoogle Scholar
  38. Kimura G, Screaton EJ, Curewitz D, Expedition 316 Scientists (2008) NanTroSEIZE Stage 1A: NanTroSEIZE shallow megasplay and frontal thrusts. IODP Prelim Rep 316. doi: 10.2204/
  39. Kimura G, Moore GF, Strasser M, Screaton E, Curewitz D, Streiff C, Tobin H (2011) Spatial and temporal evolution of the megasplay fault in the Nankai Trough. Geochem Geophys Geosyst 12:Q0A008. doi: 10.1029/2010GC003335 CrossRefGoogle Scholar
  40. Kitajima H, Saffer DM (2012) Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys Res Lett 39, L23301. doi: 10.1029/2012GL053793 CrossRefGoogle Scholar
  41. Kitajima H, Chester FM, Biscontin G (2012) Mechanical and hydraulic properties of Nankai accretionary prism sediments: effect of stress path. Geochem Geophys Geosyst 13:Q0AD27. doi: 10.1029/2012GC004124 CrossRefGoogle Scholar
  42. Kopf A, Saffer DM, Davis EE, Hammerschmidt S, LaBonte A, Meldrum R, Toczko S, Lauer R, Heesemann M, Macdonald R, Wheat CG, Jannasch HW, Edwards K, Orcutt B, Haddad A, Villinger H, Araki E, Kitada K, Kimura T, Kido Y (2011) The SmartPlug and GeniusPlug: simple retrievable observatory systems for NanTroSEIZE borehole monitoring. In: Kopf A, Araki E, Toczko S (eds) Expedition 332 Scientists, Proc IODP 332. doi: 10.2204/iodp.proc.332.105.2011
  43. Miyazaki S, Heki K (2001) Crustal velocity field of southwest Japan: subduction and arc-arc collision. J Geophys Res 106:4305–4326CrossRefGoogle Scholar
  44. Moore JC, Saffer D (2001) Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology 29:183–186CrossRefGoogle Scholar
  45. Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three-dimensional splay fault geometry and implications for tsunami generation. Science 318:1128–1131CrossRefGoogle Scholar
  46. Moore GF, Park J-O, Bangs NL, Gulick SP, Tobin HJ, Nakamura Y, Sato S, Tsuji T, Yoro T, Tanaka H, Uraki S, Kido Y, Sanada Y, Kuramoto S, Taira A (2009) Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect. Proc IODP 314/315/316. doi: 10.2204/iodp.proc.314315316.102.2009
  47. Moore JC, Barrett M, Thu MK (2012) High fluid pressures and high fluid flow rates in the Megasplay Fault Zone, NanTroSEIZE Kumano Transect, SW Japan. Geochem Geophys Geosyst 13:Q0AD25. doi: 10.1029/2012GC004181 Google Scholar
  48. Moore GF, Kanagawa K, Strasser M, Dugan B, Maeda L, Toczko S, Expedition 338 Scientists (2013) NanTroSEIZE Stage 3: NanTroSEIZE plate boundary deep riser IODP preliminary report 338. doi: 10.2204/
  49. Moore JC, Barrett M, Thu MK (2013) Fluid pressures and fluid flows from boreholes spanning the NanTroSEIZE transect through the Nankai Trough, SW Japan. Tectonophysics 600:108–115. doi: 10.1016/j.tecto.2013.01.026 Google Scholar
  50. Neuzil CE (1994) How permeable are clays and shales? Water Resour Res 30:145–150CrossRefGoogle Scholar
  51. Park J-O, Tsuru T, Kodaira S, Cummins PR, Kaneda Y (2002) Splay fault branching along the Nankai Subduction Zone. Science 297:1157–1160CrossRefGoogle Scholar
  52. Park J-O, Fujie G, Wijerathne L, Hori T, Kodaira S, Fukao Y, Moore GF, Bangs NL, Si K, Taira A (2010) A low-velocity zone with weak reflectivity along the Nankai subduction zone. Geology 38:283–286CrossRefGoogle Scholar
  53. Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong T-F (eds) Fault mechanics and transport properties of rocks. Academic Press, San Diego, CA, pp 475–503CrossRefGoogle Scholar
  54. Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res 111, B05311. doi: 10.1029/2005JB004006 CrossRefGoogle Scholar
  55. Rowe K, Screaton E, Guo J, Underwood MB (2011) Data report: permeabilities of sediments from the Kumano Basin transect off Kii Peninsula, Japan. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Washington, DC. doi: 10.2204/iodp.proc.314315316.211.2011 Google Scholar
  56. Rowe KT, Screaton EJ, Ge S (2012) Coupled fluid flow and deformation modeling of the frontal thrust region of the Kumano Basin transect, Japan: implications for fluid pressures and décollement downstepping. Geochem Geophys Geosyst 13:Q0AD23. doi: 10.1029/2011GC003861 CrossRefGoogle Scholar
  57. Rudnicki JW, Chen C-H (1988) Stabilization of rapid frictional slip on a weakening fault by dilatant hardening. J Geophys Res 93:4745–4757CrossRefGoogle Scholar
  58. Saffer DM, Flemings PB, Boutt D, Doan ML, Ito T, McNeill L, Byrne T, Conin M, Lin W, Kano Y, Araki E, Eguchi N, Toczko S (2013) In situ stress and pore pressure in the Kumano Forearc Basin, offshore SW Honshu from down-hole measurements during riser drilling. Geochem Geophys Geosyst 14:1454–1470. doi: 10.1002/ggge.20051 Google Scholar
  59. Sagiya T, Thatcher W (1999) Coseismic slip resolution along a plate boundary megathrust: the Nankai Trough, southwest Japan. J Geophys Res 104:1111–1129CrossRefGoogle Scholar
  60. Sakaguchi A, Chester F, Curewitz D, Fabbri O, Goldsby D, Kimura G, Li C-F, Masaki Y, Screaton EJ, Tsutsumi A, Ujiie K, Yamaguchi A (2011) Seismic slip propagation to the updip end of plate boundary subduction interface faults: vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores. Geology 39:395–398CrossRefGoogle Scholar
  61. Samuelson J, Elsworth D, Marone C (2009) Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J Geophys Res 114, B12404. doi: 10.1029/2008JB006273 CrossRefGoogle Scholar
  62. Samuelson J, Elsworth D, Marone C (2011) Influence of dilatancy on the frictional constitutive behavior of a saturated fault zone under a variety of drainage conditions. J Geophys Res 116, B10406. doi: 10.1029/2011JB008556 CrossRefGoogle Scholar
  63. Satake K (1993) Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data. J Geophys Res 98:4553–4565CrossRefGoogle Scholar
  64. Sawyer AH, Flemings P, Elsworth D, Kinoshita M (2008) Response of submarine hydrologic monitoring instruments to formation pressure changes: theory and application to Nankai advanced CORKs. J Geophys Res 113, B01102. doi: 10.1029/2007JB005132 CrossRefGoogle Scholar
  65. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42CrossRefGoogle Scholar
  66. Screaton EJ, Kimura G, Curewitz D, the Expedition 316 Scientists (2009) Expedition 316 summary. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Washington, DC. doi: 10.2204/iodp.proc.314315316.131.2009 Google Scholar
  67. Segall P, Rice JR (1995) Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J Geophys Res 100:22155–22171CrossRefGoogle Scholar
  68. Segall P, Rice JR (2006) Does shear heating of pore fluid contribute to earthquake nucleation? J Geophys Res 111, B09316. doi: 10.1029/2005JB004129 CrossRefGoogle Scholar
  69. Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J Geophys Res 98:17941–17948CrossRefGoogle Scholar
  70. Sibson RH (1992) Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211:283–293CrossRefGoogle Scholar
  71. Solomon EA, Hulme S, Claesson L, Tomaru H, Wheat G, Riedinger N, Scientists TE (2008) Geochemical constraints on fluid-rock reactions, fluid sources, and flow pathways along the NanTroSEIZE Transect; IODP Expeditions 315/316. American Geophysical Union, Fall Meeting 2008, abstract #T21F-03Google Scholar
  72. Strasser M, Moore GF, Kimura G, Kitamura Y, Kopf AJ, Lallemant S, Park J-O, Screaton EJ, Su X, Underwood MB, Zhao X (2009) Origin and evolution of a splay fault in the Nankai accretionary wedge. Nat Geosci 2:648–652CrossRefGoogle Scholar
  73. Taylor E, Fisher A (1993) Sediment permeability at the Nankai accretionary prism, Site 808. Proc ODP Sci Res 131:235–245Google Scholar
  74. Tobin HJ, Saffer DM (2009) Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37:679–682CrossRefGoogle Scholar
  75. Tobin H, Kinoshita M, Ashi J, Lallemant S, Kimura G, Screaton E, Moe KT, Masago H, Curewitz D, the Expedition 314/315/316 Scientists (2009) NanTroSEIZE Stage 1 expeditions: introduction and synthesis of key results. In: Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT (eds) Expedition 314/315/316 Scientists, Proc IODP 314/315/316. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.314315316.101.2009 Google Scholar
  76. Toki T, Tsunogai U, Gamo T, Kuramoto S, Ashi J (2004) Detection of low-chloride fluids beneath a cold seep field on the Nankai accretionary wedge off Kumano, south of Japan. Earth Planet Sci Lett 228:37–47CrossRefGoogle Scholar
  77. Tsutsumi A, Nishino S, Mizoguchi K, Hirose T, Uehara S, Sato K, Tanikawa W, Shimamoto T (2004) Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan. Tectonophysics 379:93–108CrossRefGoogle Scholar
  78. Underwood MB, Deng X (1997) Clay mineralogy and clay geochemistry in the vicinity of the décollement zone, Northern Barbados Ridge. Proc Ocean Drill Program 156:1–30Google Scholar
  79. Wang K (2004) Applying fundamental principles and mathematical models to understand processes and estimate parameters. In: Davis E, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, pp 376–413Google Scholar
  80. Wang K, Davis EE (1996) Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations. J Geophys Res 101:11,483–11,495Google Scholar
  81. Wang K, Davis EE (2003) High permeability of young oceanic crust constrained by thermal and pressure observations. In: Taniguchi M, Wang K, Gamo T (eds) Land and marine hydrogeology. Elsevier, Amsterdam, pp 165–188CrossRefGoogle Scholar
  82. Wang K, Hu Y (2006) Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J Geophys Res 111, B06410. doi: 10.1029/2005JB004094 CrossRefGoogle Scholar
  83. Wheat CG, Jannasch HW, Kastner M, Hulme S, Cowen J, Edwards K, Orcutt BN, Glazer B (2010) Fluid sampling from oceanic borehole observatories: design and methods for CORK activities (1990-2010). Proc ODP 327. doi: 10.2204/iodp.proc.327.109.2011
  84. Wibberley CAJ, Shimamoto T (2003) Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. J Struct Geol 25:59–78CrossRefGoogle Scholar
  85. Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436:689–692CrossRefGoogle Scholar
  86. Wibberley CAJ, Yielding G, DiToro G (2008) Recent advances in the understanding of fault zone internal structure: a review. In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) The internal structure of fault zones: implications for mechanical and fluid-flow properties. Geol Soc Lond Spec Publ 299:5–33Google Scholar
  87. Yamaguchi A, Sakaguchi A, Sakamoto T, Iijima K, Kameda J, Kimura G, Ujiie K, Chester FM, Fabbri O, Goldsby D, Tsutsumi A, Li C-F, Curewitz D (2011) Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai Trough. Geology 39:995–998CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian B. Hammerschmidt
    • 1
  • Earl E. Davis
    • 2
  • Andre Hüpers
    • 1
  • Achim Kopf
    • 1
  1. 1.MARUM - Centre for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Pacific Geoscience Centre, Geological Survey of CanadaSidneyCanada

Personalised recommendations