Geo-Marine Letters

, Volume 33, Issue 4, pp 285–298 | Cite as

Species-specific responses of late Miocene Discoaster spp. to enhanced biosilica productivity conditions in the equatorial Pacific and the Mediterranean

  • Jan Backman
  • Isabella Raffi
  • Marina Ciummelli
  • Jack Baldauf


Census data of a major Cenozoic calcareous nannofossil genus (Discoaster) have been acquired from Site U1338, located near the Equator in the eastern Pacific Ocean and drilled in 2009 during Integrated Ocean Drilling Program (IODP) Expedition 321. The investigated 147.53 m thick upper Miocene sediment sequence is primarily composed of biogenic carbonate and biogenic silica. Diatom biostratigraphic data were used to develop a revised biomagnetostratigraphic age model, resulting in more variable late Miocene sedimentation rates. Carbonate content variations mainly reflect dilution by biogenic silica production, although intense carbonate dissolution affects a few shorter intervals. Abundance variations of discoasters show no distinct correlation with either carbonate or biosilica contents. The two dominant Discoaster taxa are D. brouweri and D. variabilis, except for a 12 m thick interval where D. bellus outnumbers the sum of all other discoasters by a factor of 4.6. Data presented indicate that first D. hamatus and then D. berggrenii both evolved from D. bellus. Three unusual morphotypes, here referred to as Discoaster A, B and C, increase in relative abundance during episodes of enhanced biosilica production in the upper half of the investigated sequence (Messinian). Strikingly similar morphotypes have been observed previously in Messinian age sediments from the Mediterranean, characterized by alternating deposition of biogenic carbonate and biosilica. This suggests a species-specific response among some of the late Miocene discoasters to broader oceanographic and climatic forcing that promoted episodes of enhanced deposition of biogenic silica.


Miocene Late Miocene Messinian Biogenic Silica Calcareous Nannofossil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research used samples and/or data provided by the Integrated Ocean Drilling Program (IODP). Constructive reviews provided by Fabrizio Lirer and Burg W. Flemming improved the paper. This research was carried out with financial support from Università "G. d'Annunzio" Chieti-Pescara (IR, MC) and from Stockholm University and the Swedish Research Council (JB). MC thanks the "Regione Abruzzo" for financial support through a grant within "Progetto Speciale Multiasse Re.C.O.Te.S.S.C.".


  1. Aubry MP (1984) Handbook of cenozoic calcareous nannoplankton (Book 1): ortholithae (Discoasters). Micropaleontology Press, New YorkGoogle Scholar
  2. Aubry MP (1992) Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 272–309Google Scholar
  3. Backman J, Shackleton NJ (1983) Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans. Mar Micropaleont 8:141–170CrossRefGoogle Scholar
  4. Backman J, Raffi I, Rio D, Fornaciari E, Pälike H (2012) Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsl Strat 45:221–244. doi: 10.1127/0078-0421/2012/0022 CrossRefGoogle Scholar
  5. Bukry D (1971a) Discoaster evolutionary trends. Micropaleontology 17:43–52CrossRefGoogle Scholar
  6. Bukry D (1971b) Cenozoic calcareous nannofossils from the Pacific Ocean. Trans San Diego Soc Nat Hist 16:303–327Google Scholar
  7. Bukry D (1973) Low-latitude coccolith biostratigraphic zonation. In: Edgar NT, Saunders JB, Herring JR (eds) Init Rpts DSDP 15. US Govt Print Office, Washington, pp 685–703. doi: 10.2973/dsdp.proc.15.116.1973 Google Scholar
  8. Bukry D (1978) Biostratigraphy of Cenozoic marine sediment by calcareous nannofossils. Micropaleontology 24:44–60CrossRefGoogle Scholar
  9. Bukry D (1981) Pacific coast coccolith stratigraphy between Point Conception and Cabo Corrientes, Deep Sea Drilling Project Leg 63. In: Yeats RS, Haq BU, Orlovsky S (eds) Init Rpts DSDP 63. US Govt Print Office, Washington, pp 445–471. doi: 10.2973/dsdp.proc.63.111.1981 Google Scholar
  10. Chepstow-Lusty A, Backman J, Shackleton NJ (1989) Comparison of upper Pliocene Discoaster abundance variations from North Atlantic Sites 552, 658, 659, and 662: further evidence for marine plankton responding to orbital forcing. In: Ruddiman WF, Sarnthein M, Baldauf JG, Heath GR (eds) Proc ODP Sci Res 108. College Station TX (Ocean Drilling Program), pp 121–141. doi: 10.2973/
  11. Chepstow-Lusty A, Shackleton NJ, Backman J (1992) Upper Pliocene Discoaster abundance from the Atlantic, Pacific, and Indian oceans: the significance of productivity pressure at low latitudes. Mem Sci Geol 44:357–373Google Scholar
  12. Di Stefano A, Verducci M, Lirer F, Ferraro L, Iaccarino SM, Hüsing SK, Hilgen FJ (2010) Paleoenvironmental conditions preceding the Messinian salinity crisis in the central Mediterranean: integrated data from the upper Miocene Trave Section (Italy). Palaeogeogr Palaeoclim Palaeoecol 297:37–53. doi: 10.1016/j.palaeo.2010.07.012 CrossRefGoogle Scholar
  13. Edwards AR (1968) The calcareous nannoplankton for Tertiary New Zealand climates. Tuatara 16:26–31Google Scholar
  14. Ellis CH, Lohmann WH, Wray JL (1972) Upper Cenozoic calcareous nannofossils from the Gulf of Mexico (Deep Sea Drilling Project, Leg 1, Site 3). Quarterly Colorado School Mines 67:1–103Google Scholar
  15. Gibbs S, Shackleton N, Young J (2004) Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Mar Micropaleont 51:39–56CrossRefGoogle Scholar
  16. Haq BU, Lohmann GP (1976) Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean. Mar Micropaleont 1:119–194CrossRefGoogle Scholar
  17. Hilgen FJ, Krijgsman W (1999) Cyclostratigraphy and astrochronology of the Tripoli diatomite formation (pre-evaporite Messinian, Sicily, Italy). Terra Nova 11:16–22CrossRefGoogle Scholar
  18. Hilgen FJ, Krijgsman W, Langereis CG, Lourens LJ, Santarelli A, Zachariasse WJ (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet Sci Lett 136:495–510. doi: 10.1016/0012-821X(95)00207-S CrossRefGoogle Scholar
  19. Hilgen FJ, Iaccarino S, Krijgsman W, Villa G, Zachariasse WJ (2000) The Global Boundary Stratotype Section and Point (GSSP) of the Messinian Stage (uppermost Miocene). Episodes 23:172–178Google Scholar
  20. Hohenegger J, Coric S, Khatum M, Pervesler P, Rögl F, Rupp C, Slege A, Uchman A, Wagreich M (2009) Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden Sooss core. Int J Earth Sci (Geol Rundsch) 98:915–930. doi: 10.1007/s00531-007-0287-7 CrossRefGoogle Scholar
  21. Kemp AES, Baldauf JG (1993) Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature 362:141–144. doi: 10.1038/362141a CrossRefGoogle Scholar
  22. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655. doi: 10.1038/23231 CrossRefGoogle Scholar
  23. Lourens LJ, Hilgen FJ, Shackleton NJ, Laskar J, Wilson D (2004) The neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geological time scale 2004. Cambridge University Press, Cambridge, pp 409–440Google Scholar
  24. Lyle M, Backman J (2013) Data Report: Calibration of XRF-estimated CaCO3 along the Site U1338 splice. In: Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A, and the Expedition 320/321 Scientists, Proc IODP 320/321. Integrated Ocean Drilling Program Management International, Tokyo, pp 1–16. doi: 10.2204/iodp.proc.320321.205.2013
  25. Lyle M, Dadey KA, Farrell JW (1995) The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the closure of the Panama gateway. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proc ODP Sci Res 138. College Station TX (Ocean Drilling Program), pp 821–838. doi: 10.2973/
  26. Martini E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A (ed) Proc II Plankt Conf. Ed Tecnoscienza, Roma, pp 739–785Google Scholar
  27. Martini E, Bramlette MN (1963) Calcareous nannoplankton from the experimental mohole drilling. J Paleont 37:845–856Google Scholar
  28. Mörth CM, Backman J (2011) Practical steps for improved estimates of calcium carbonate concentrations in deep sea sediments using coulometry. Limnol Oceang: Methods 9:565–570. doi: 10.4319/lom.2011.9.565 CrossRefGoogle Scholar
  29. Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A (eds) (2010) Pacific equatorial age transect. Proc IODP 320/321. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.320321.2010
  30. Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554Google Scholar
  31. Prins B (1971) Speculations on relations, evolution, and stratigraphic distribution of discoasters. In: Farinacci A (ed) Proc II Plankt Conf. Ed Tecnoscienza, Roma, pp 1017–1037Google Scholar
  32. Raffi I, Rio D, d'Atri A, Fornaciari E, Rocchetti S (1995) Quantitative distribution patterns and biomagnetostratigraphy of middle and late Miocene calcareous nannofossils from equatorial Indian and Pacific oceans (Leg 115, 130, and 138). In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proc ODP Sci Res 138. College Station TX (Ocean Drilling Program), pp 479–502. doi: 10.2973/
  33. Raffi I, Backman J, Rio D (1998) Evolutionary trends of tropical calcareous nannofossils in the late Neogene. Mar Micropaleont 35:17–41CrossRefGoogle Scholar
  34. Raffi I, Mozzato C, Fornaciari E, Hilgen FJ, Rio D (2003) Late Miocene calcareous nannofossil biostratigraphy and astrobiochronology for the Mediterranean region. Micropaleontology 49:1–26CrossRefGoogle Scholar
  35. Rio D, Fornaciari E, Raffi I (1990) Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). In: Duncan RA, Backman J, Peterson LC (eds) Proc ODP Sci Res 115. College Station TX (Ocean Drilling Program), pp 175–235. doi: 10.2973/
  36. Ryan WBF, Hsü KJ, Kaneps AG (eds) (1973) Init Rpts DSDP 13. US Govt Print Office, Washington. doi: 10.2973/dsdp.proc.13 Google Scholar
  37. Stradner H (1959) First report on the discoasters of the Tertiary of Austria and their stratigraphic use. In: Proc 5th World Petrol Congr, New York, vol 1, pp 1081–1095Google Scholar
  38. Stradner H (1973) Catalogue of calcareous nannoplankton from sediments of Neogene age in the eastern North Atlantic and Mediterranean Sea. In: Ryan WBF, Hsü KJ, Kaneps AG (eds) Init Rpts DSDP 13:2. US Govt Print Office, Washington, pp 1137–1199. doi: 10.2973/dsdp.proc.13.142.1973 Google Scholar
  39. Theodoridis S (1983) Calcareous nannofossil biozonation of the Miocene and revision of the helicoliths and discoasters. Utrecht Micropaleont Bull 32:1–271Google Scholar
  40. Villa G, Fioroni C, Pea L, Bohaty S, Persico D (2008) Middle Eocene-late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748. Mar Micropaleont 69:173–192. doi: 10.1016/j.marmicro.2008.07-006 CrossRefGoogle Scholar
  41. Vincent E, Berger WH (1985) Carbon dioxide and polar cooling in the Miocene: the Monterey Hypothesis. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. Geophys Monogr 32:455–468Google Scholar
  42. Wilkens R, Dickens GR, Tian J, Backman J (2013) Data Report: Revised composite depth scales for Sites U1336, U1337 and U1338. In: Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A, and the Expedition 320/321 Scientists, Proc IODP 320/321. Integrated Ocean Drilling Program Management International, Tokyo, pp 1–158. doi: 10.2204/iodp.proc.320321.209.2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Backman
    • 1
  • Isabella Raffi
    • 2
  • Marina Ciummelli
    • 2
  • Jack Baldauf
    • 3
  1. 1.Department of Geological SciencesStockholm UniversityStockholmSweden
  2. 2.Dipartimento di Ingegneria e Geologia (InGeo)–CeRSGeoUniversità “G. d’Annunzio” di Chieti-PescaraChieti ScaloItalia
  3. 3.Department of OceanographyTexas A&M UniversityCollege StationUSA

Personalised recommendations