Geo-Marine Letters

, Volume 33, Issue 2–3, pp 117–127 | Cite as

Distribution and thickness of sedimentary facies in the coastal dune, beach and nearshore sedimentary system at Maspalomas, Canary Islands

  • Angela Fontán Bouzas
  • Javier Alcántara-Carrió
  • Isabel Montoya Montes
  • Andrés Barranco Ojeda
  • Silvia Albarracín
  • Jorge Rey Díaz de Rada
  • Jorge Rey Salgado


Numerous studies have shown that most beaches and coastal dune systems of the world are currently eroding but very few have investigated the combined sediment budgets of subaerial and nearshore submarine systems. In the case of the dune field of the Maspalomas Natural Special Reserve (in the south of Gran Canaria), the adjacent Maspalomas and El Inglés beaches and the adjacent submarine platform, the sediment budgets have been severely affected by erosion over the past few decades. The objectives of this study were to investigate the availability of sand within the modern sedimentary system, including the coastal dunes, the beaches and the submerged shelf, but also to assess local sediment sinks. An isopach map generated on the basis of topo-bathymetric data and seismic-reflection profiles revealed that sediment thickness varies from 0–22 m in the study area. Expanses of relatively low sediment thickness were identified in the south-western sector of the coastal dune field along Maspalomas beach, and in the nearshore region to the south of this beach. These localized sediment-deficit areas earmark Maspalomas beach as the most vulnerable shore strip threatened by erosion. The shallow seismic data also revealed that the submarine platform south of Maspalomas represents a marine terrace cut into an ancient alluvial fan, thus documenting an influence of the geomorphological heritage on the present-day morphodynamics. A side-scan sonar mosaic of this nearshore platform enabled the delimitation of areas covered by rock, boulders and gravel, vegetated sand patches and a mobile sand facies, the latter including ripple and megaripple fields. The megaripple field in a valley close to the talus of the marine terrace has been identified as a major sediment sink of the Maspalomas sedimentary system. It is fed by south-westerly storm-wave events. The sediment deficit in the coastal dune field and along Maspalomas beach can therefore only be explained by a currently faster loss of sediment to an offshore sink than can be compensated by the supply of sand from outside the system.


Beach Coastal Dune Sand Ridge Dune Field Seismic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to CIMA S.L. enterprise for the collaboration during the oceanographic survey and to André Pacheco from the University of Algarve for his participation in the fieldwork. This study is a contribution to the CTM2009-09479 research project and has been partially supported by the Cabildo Insular de Gran Canaria and the ACOPLAT internal project of the Universidad Católica de Valencia. Also gratefully acknowledged are constructive comments from I.D. Correa, an anonymous reviewer and the editors.


  1. Alcántara-Carrió J, Fontán A (2009) Factors controlling the morphodynamics and geomophologic evolution of a cuspate foreland in a volcanic intraplate island (Maspalomas, Canary Islands). J Coast Res SI 56:683–687Google Scholar
  2. Alonso I, Montesdeoca I, Vivares A, Alcántara-Carrió J (2001) Variabilidad granulométrica y de la línea de costa en las playas de El Inglés y Maspalomas (Gran Canaria). Geotemas 3(1):39–42Google Scholar
  3. Alonso I, Hernández L, Alcántara-Carrió J, Cabrera L, Yanes A (2011) Los grandes campos de dunas actuales de Canarias. In: Gracia JE, Sanjaume E, Flor G (eds) Las dunas de España. Sociedad Española de Geomorfología, Madrid, pp 467–496Google Scholar
  4. Barnard PL, Erikson LH, Kvitek RG (2011) Small-scale sediment transport patterns and bedform morphodynamics: new insights from high-resolution multibeam bathymetry. Geo-Mar Lett 31(4):227–236. doi: 10.1007/s00367-011-0227-1 CrossRefGoogle Scholar
  5. Bender VB, Hanebuth TJJ, Mena A, Baumann K-H, Francés G, von Dobeneck T (2012) Control of sediment supply, palaeoceanography and morphology on late Quaternary sediment dynamics at the Galician continental slope. Geo-Mar Lett 32(4):313–335. doi: 10.1007/s00367-012-0282-2 CrossRefGoogle Scholar
  6. Blondel P (2009) The handbook of side-scan sonar. Springer, BerlinCrossRefGoogle Scholar
  7. Carracedo JC, Pérez-Torrado FJ, Ancochea E, Meco J, Hernán F, Cubas CR, Casillas R, Rodriguez-Badiola E (2002) Cenozoic volcanism II: The Canary Islands. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society of London, London, pp 438–472Google Scholar
  8. Clift P, Acosta J (eds) (2005) Geophysics of the Canary Islands. Results of Spain’s Exclusive Economic Zone Program. Springer, New YorkGoogle Scholar
  9. Criado C, González R, Yanes A (2001) Rasgos sedimentológicos de los fondos marinos de Maspalomas (Gran Canaria). Vegueta 6:191–200Google Scholar
  10. Eisma D (1988) An introduction to the geology of continental shelves. In: Postma H, Zijlstra JJ (eds) Continental shelves. Ecosystems of the World, vol 27. Elsevier, Amsterdam, pp 39–91Google Scholar
  11. Ernstsen VB, Noormets R, Hebbeln D, Bartholomä A, Flemming BW (2006) Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Mar Lett 26(3):141–149. doi: 10.1007/s00367-006-0025-3 CrossRefGoogle Scholar
  12. Fontán A, Alcántara-Carrió J, Poveda JM, Peña MA (2007) Aplicación de técnicas de GPS diferencial, fotogrametría y geofísica a la cuantificación de procesos erosivos y balances sedimentarios en playas y dunas costeras. In: Rivas R, Grisotto A, Sadico M (eds) Teledetección—Herramienta para la gestión sostenible. Proc XII Congr Asociación Española de Teledetección, 19–21 September 2007, Mar del Plata, Argentina, pp 635–638Google Scholar
  13. Fontán A, Alcántara Carrió J, Correa ID (2012) Combined erosion at the beaches and the inner shelf in short and medium term (Maspalomas, Canary Islands). Geologica Acta 10(4):411–426. doi: 10.1344/105.000001756
  14. Hernández L, Alonso I, Sánchez-Pérez I, Alcántara-Carrió J, Montesdeoca I (2007) Shortage of sediments in the Maspalomas dune field (Gran Canaria, Canary Islands) deduced from analysis of aerial photographs, foraminiferal content, and sediment transport trends. J Coast Res 23(4):993–999CrossRefGoogle Scholar
  15. Herránz P, San Gil C, Balle P, Acosta J, Palomo C, Sanz JL, Bravo de Laguna J, Franquet F (1983) Carta de pesca de Fuerteventura Este. Instituto Español de Oceanografía y Gobierno Autónomo de Canarias, MadridGoogle Scholar
  16. Knaapen MAF, van Bergen Henegouw CN, Hu YY (2005) Quantifying bedform migration using multi-beam sonar. Geo-Mar Lett 25(5):306–314. doi: 10.1007/s00367-005-0005-z CrossRefGoogle Scholar
  17. Krastel S, Schmincke H-U (2002) The channel between Gran Canaria and Tenerife: constructive processes and destructive events during the evolution of volcanic islands. Int J Earth Sci 91:629–641CrossRefGoogle Scholar
  18. Krastel S, Schmincke H-U, Jacobs C (2001) Formation of submarine canyons on the flanks of the Canary Islands. Geo-Mar Lett 20(3):160–167. doi: 10.1007/s003670000049 CrossRefGoogle Scholar
  19. Le Dantec N, Hogarth LJ, Driscoll NW, Babcock JM, Barnhardt WA, Schwab WC (2010) Tectonic controls on nearshore sediment accumulation and submarine canyon morphology offshore La Jolla, Southern California. Mar Geol 268(1/4):115–128CrossRefGoogle Scholar
  20. Mangas J, Hernández L, Pérez-Chacón E, Menéndez I, Gouraz AL, Hernández A (2007) The outcrop of the underlying substratum of the Maspalomas dune field (Gran Canaria, Canary Islands): a sign of a sedimentary deficit. In: Abstr I Int Symp in Marine Sciences, Universidad Católica de Valencia. Nereis: Estudios y Propuestas Científico-Técnicas, vol I, p 294Google Scholar
  21. McDougall I, Schmincke H-U (1976) Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases. Bull Volcanol 40:57–77CrossRefGoogle Scholar
  22. Meco J (1989) Islas Canarias. In: Pérez-González A, Cabra Gil P, Martín Serrano A (eds) Mapa del Cuaternario de España. Islas Canarias. Escala 1:100.000. Instituto Tecnológico GeoMinero de España, MadridGoogle Scholar
  23. Menard HW (1983) Insular erosion, isostasy, and subsidence. Science 220:913–918CrossRefGoogle Scholar
  24. Menéndez I, Silva PG, Martín-Betancor M, Pérez-Torrado J, Guillou H, Scaillet S (2008) Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain). Geomorphology 102(1):189–203CrossRefGoogle Scholar
  25. MMA (2002) Estudio ecocartográfico del litoral de la zona sur de la isla de Gran Canaria (Las Palmas). Ministerio de Medio Ambiente, Secretaría de Estado de Aguas y Costas, Dirección General de Costas, MadridGoogle Scholar
  26. MMA (2008) Estudio integral de la playa y dunas de Maspalomas. Ministerio de Medio Ambiente, Informe Técnico, Dirección General de Costas, MadridGoogle Scholar
  27. Oiwane H, Tonai S, Kiyokawa S, Nakamura Y, Suganuma Y, Tokuyama H (2011) Geomorphological development of the Goto Submarine Canyon, northeastern East China Sea. Mar Geol 288(1/4):49–60CrossRefGoogle Scholar
  28. Pérez-Torrado JF, Santana F, Rodríguez-Santana A, Melián AM, Lomostchitz A, Gimeno D, Cabrera MC, Baez MC (2002) Reconstrucción paleogeográfica de los depósitos volcano-sedimentarios Pliocenos en el litoral NE de Gran Canaria (Islas Canarias) mediante métodos topográficos. Geogaceta 32:43–46Google Scholar
  29. Quartau R, Trenhaile AS, Mitchell NC, Temera F (2010) Modelling the development of a volcanic island shelf by erosion: Faial Island in the Azores Archipelago. Mar Geol 275:66–83CrossRefGoogle Scholar
  30. Rey J, Medialdea T (1989) Los sedimentos cuaternarios superficiales del margen continental español. Publicaciones Especiales del Instituto Español de Oceanografía 3, MadridGoogle Scholar
  31. Sánchez-Pérez I (2010) Los foraminíferos de los distintos ambientes sedimentaros de Maspalomas: plataforma, playas, dunas, lagoon costero y materiales subyacentes. Aportaciones al origen y evolución de este sistema. PhD Thesis, University of Las Palmas, Gran CanariaGoogle Scholar
  32. Sánchez-Pérez I, Alonso I, Usera J (2005) Determination of the sediment inputs from the upper shelf towards the beaches and dunes of Maspalomas (Gran Canaria) by foraminifera analysis. J Coast Res SI 49:46–51Google Scholar
  33. Sánchez-Pérez I, Alonso I, Mangas J, Rodríguez S, Cearreta A, Medina R (2008) Caracterización de los sedimentos subyacentes en la Reserva Natural Especial de las Dunas de Maspalomas (Gran Canaria). Consideraciones preliminares acerca del origen de este sistema. Geotemas 10:579–582Google Scholar
  34. Shaw J, Piper DJW, Skulski T, Lamplugh MJ, Craft A, Roy A (2012) New evidence for widespread mass transport on the Northeast Newfoundland Shelf revealed by Olex single-beam echo sounding. Geo-Mar Lett 32(1):5–15. doi: 10.1007/s00367-011-0233-3 CrossRefGoogle Scholar
  35. Thieler ER, Schwab WC, Pilkey OH, Cleary WJ (2001) Geologic framework and modern sedimentation on the shoreface and inner shelf at Wrightsville Beach, North Carolina. J Sediment Res 71(6):958–970CrossRefGoogle Scholar
  36. Trembanis AC, Hume TM (2011) Sorted bedforms on the inner shelf off northeastern New Zealand: spatiotemporal relationships and potential paleo-environmental implications. Geo-Mar Lett 31(3):203–214. doi: 10.1007/s00367-010-0225-8 CrossRefGoogle Scholar
  37. Vallejo I, Hernández Calvento L, Ojeda J, Mayer P, Gómez Molina A (2009) Caracterización morfométrica y balance sedimentario en el sistema de dunas de maspalomas (Gran Canaria) a partir de datos LIDAR. Rev Soc Geol España 22(1/2):57–65Google Scholar
  38. Van den Bogaard P, Schmincke H-U (1998) Chronostratigraphy of Gran Canaria. In: Weaver PPE, Schmincke H-U, Firth JV, Duffield W (eds) Proc Ocean Drilling Program Sci Results 157:127–140Google Scholar
  39. Vandorpe TP, Van Rooij D, Stow DAV, Henriet J-P (2011) Pliocene to Recent shallow-water contourite deposits on the shelf and shelf edge off south-western Mallorca, Spain. Geo-Mar Lett 31(5/6):391–403. doi: 10.1007/s00367-011-0248-9 CrossRefGoogle Scholar
  40. Völker DJ (2010) A simple and efficient GIS tool for volume calculations of submarine landslides. Geo-Mar Lett 30(5):541–547. doi: 10.1007/s00367-009-0176-0 CrossRefGoogle Scholar
  41. Wilken D, Feldens P, Wunderlich T, Heinrich C (2012) Application of 2D Fourier filtering for elimination of stripe noise in side-scan sonar mosaics. Geo-Mar Lett 32(4):337–347. doi: 10.1007/s00367-012-0293-z CrossRefGoogle Scholar
  42. Yanes A (1990) Morfología litoral de las Canarias Occidentales. Secretariado de publicaciones de la ULL, Universidad de La LagunaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Angela Fontán Bouzas
    • 1
  • Javier Alcántara-Carrió
    • 1
  • Isabel Montoya Montes
    • 2
  • Andrés Barranco Ojeda
    • 3
  • Silvia Albarracín
    • 1
  • Jorge Rey Díaz de Rada
    • 3
  • Jorge Rey Salgado
    • 3
  1. 1.Institute of Environmental and Marine SciencesUniversidad Católica de ValenciaValenciaSpain
  2. 2.Department of Biology and GeologyUniversidad Rey Juan CarlosMóstolesSpain
  3. 3.ESGEMARMálagaSpain

Personalised recommendations