Geo-Marine Letters

, Volume 32, Issue 5–6, pp 465–472 | Cite as

Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method

  • Hirotoshi Sakagami
  • Nobuo Takahashi
  • Akihiro Hachikubo
  • Hirotsugu Minami
  • Satoshi Yamashita
  • Hitoshi Shoji
  • Oleg Khlystov
  • Gennadiy Kalmychkov
  • Mikhail Grachev
  • Marc De Batist
Technical Paper

Abstract

Assessments of the molecular and isotopic composition of hydrate-bound and dissolved gases in pore water were conducted during the multi-phase gas hydrate project (MHP-09) cruise VER09-03 to the southern basin of Lake Baikal in September 2009. To avoid changes in gas composition during core sampling and transport, various headspace methods were investigated aimed at preserving the dissolved gases in pore water. When distilled water was added to the sediment samples, the concentrations of carbon dioxide and oxygen decreased because of dissolution into the water and/or microbial consumption. When the headspace was not flushed with inert gases, trace levels of hydrogen and ethylene were detected. The findings suggest that best preparation is achieved by flushing the headspace with helium, and adding a saturated aqueous solution of sodium chloride. This improved headspace method served to examine the molecular and isotopic compositions of gas samples retrieved at several new sites in the southern basin. Methane was the major component, and the proportion of ethane ranged widely from 0.0009 to 1.67 mol% of the total hydrocarbon gases. The proportions of propane and higher hydrocarbons were small or less than their detection limits. The carbon isotope signatures suggest that microbial-sourced methane and ethane were dominant in the Peschanka study area, whereas ethane was of thermogenic origin at all other study sites in the southern basin of Lake Baikal.

References

  1. Bernard BB, Brooks JM, Sackett WM (1976) Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett 31:48–54CrossRefGoogle Scholar
  2. De Batist M, Klerkx J, Van Rensbergen P, Vanneste M, Poort J, Golmshtok AY, Kremlev AA, Khlystov OM, Krinitsky P (2002) Active hydrate destabilization in Lake Baikal, Siberia? Terra Nova 14:436–442CrossRefGoogle Scholar
  3. Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Lett 36:L18504. doi:10.1029/2009GL039805 CrossRefGoogle Scholar
  4. Hachikubo A, Khlystov O, Krylov A, Sakagami H, Minami H, Nunokawa Y, Yamashita S, Takahashi N, Shoji H, Nishio S, Kida M, Ebinuma T, Kalmychkov G, Poort J (2010) Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. Geo-Mar Lett 30(3/4):321–329. doi:10.1007/s00367-010-0203-1 CrossRefGoogle Scholar
  5. Hachikubo A, Khlystov O, Kida M, Sakagami H, Minami H, Yamashita S, Takahashi N, Shoji H, Kalmychkov G, Poort J (2012) Raman spectroscopic and calorimetric observations on natural gas hydrates with cubic structures I and II obtained from Lake Baikal. Geo-Mar Lett. doi:10.1007/s00367-012-0285-z
  6. Kalmychkov GV, Egorov AV, Kuz’min MI, Khlystov OM (2006) Genetic types of methane from Lake Baikal. Dokl Earth Sci 411A:1462–1465CrossRefGoogle Scholar
  7. Khlystov OM (2006) New findings of gas hydrates in the Baikal bottom sediments. Russ Geol Geophys 47:979–981Google Scholar
  8. Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamashita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33:L24603. doi:10.1029/2006GL028296 CrossRefGoogle Scholar
  9. Kida M, Hachikubo A, Sakagami H, Minami H, Krylov A, Yamashita S, Takahashi N, Shoji H, Khlystov O, Poort J, Narita H (2009) Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal. Geochem Geophys Geosyst 10:Q05003. doi:10.1029/2009GC002473 CrossRefGoogle Scholar
  10. Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorob’eva SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solov’ev VA, Grachev MA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Dokl Earth Sci 393A:1342–1346Google Scholar
  11. Kuz’min MI, Kalmychkov GV, Geletii VF, Gnilusha VA, Goreglyad AV, Khakhaev BN, Pevzner LA, Kawai T, Yoshida N, Duchkov AD, Ponomarchuk VA, Kontorovich AE, Bazhin NM, Makhov GA, Dyadin YuA, Kuznetsov FA, Larionov EG, Manakov AYu, Smolyakov BS, Mandelbaum MM, Zheleznyakov NK (1998) First find of gas hydrates in sediments of Lake Baikal. Dokl Earth Sci 362:1029–1031Google Scholar
  12. Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23(3/4):289–299. doi:10.1007/s00367-003-0144-z CrossRefGoogle Scholar
  13. Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702CrossRefGoogle Scholar
  14. Schoell M (1988) Multiple origins of methane in the earth. Chem Geol 71:1–10CrossRefGoogle Scholar
  15. Shoji H, Khlystov O, De Batist M, Takahashi N, Grachev M (2010) Operation Report of Multi-phase Gas Hydrate Project 2009 (MHP-09), R/V G. U. Vereshchagin Cruise. New Energy Resources Research Center, Kitami Institute of Technology, Kitami.Google Scholar
  16. Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases. CRC Press, Boca RatonGoogle Scholar
  17. Subramanian S, Kini RA, Dec SF, Sloan ED Jr (2000a) Evidence of structure II hydrate formation from methane+ethane mixtures. Chem Eng Sci 55:1981–1999CrossRefGoogle Scholar
  18. Subramanian S, Ballard AL, Kini RA, Dec SF, Sloan ED Jr (2000b) Structural transitions in methane+ethane gas hydrates — part I: upper transition point and applications. Chem Eng Sci 55:5763–5771CrossRefGoogle Scholar
  19. Taylor SW, Sherwood Lollar B, Wassenaar LI (2000) Bacteriogenic ethane in near-surface aquifers: implications for leaking hydrocarbon well bores. Environ Sci Technol 34:4727–4732CrossRefGoogle Scholar
  20. Van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30:631–634CrossRefGoogle Scholar
  21. Vogel JC, Grootes PM, Mook WG (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Z Physik 230:225–238CrossRefGoogle Scholar
  22. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hirotoshi Sakagami
    • 1
  • Nobuo Takahashi
    • 1
  • Akihiro Hachikubo
    • 1
  • Hirotsugu Minami
    • 1
  • Satoshi Yamashita
    • 1
  • Hitoshi Shoji
    • 1
  • Oleg Khlystov
    • 2
  • Gennadiy Kalmychkov
    • 3
  • Mikhail Grachev
    • 2
  • Marc De Batist
    • 4
  1. 1.Kitami Institute of TechnologyKitamiJapan
  2. 2.Limnological Institute SB RASIrkutskRussia
  3. 3.Vinogradov Institute of Geochemistry SB RASIrkutskRussia
  4. 4.Renard Centre of Marine GeologyGhent UniversityGhentBelgium

Personalised recommendations