Geo-Marine Letters

, Volume 32, Issue 5–6, pp 407–417 | Cite as

Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal

  • Jeffrey Poort
  • Oleg M. Khlystov
  • Lieven Naudts
  • Albert D. Duchkov
  • Hitoshi Shoji
  • Shin’ya Nishio
  • Marc De Batist
  • Akihiro Hachikubo
  • Masato Kida
  • Hirotsugu Minami
  • Andrey Y. Manakov
  • Marina V. Kulikova
  • Alexey A. Krylov


Thermal measurements and hydrate mapping in the vicinity of the K-2 mud volcano in Lake Baikal have revealed a particular type of association of thermal anomalies (29–121 mW m–2) near hydrate-forming layers. Detailed coring within K-2 showed that hydrates are restricted to two distinct zones at sub-bottom depths exceeding 70–300 cm. Temperature data from stations with hydrate recovery and degassing features all display low thermal gradients. Otherwise, the thermal gradients within the mud volcano are generally increased. These findings imply a more complicated thermal regime than often assumed for mud volcanoes, with important roles for both fluids and hydrates. The coexistence of neighbouring low and high thermal anomalies is interpreted to result from discharging and recharging fluid activity, rather than hydrate thermodynamics. It is suggested that hydrates play a key role in controlling the fluid circulation pattern at an early stage. At a later stage, the inflow of undersaturated lake water would favour the dissolution of structure I hydrates and the formation of structure II hydrates, the latter having been observed on top of structure I hydrates in the K-2 mud volcano.


Thermal Gradient Thermal Anomaly Baikal Basin Lake Floor Core Catcher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the crews of R/V Vereshchagin and R/V Titov and all cruise participants who have helped us to collect the data on Lake Baikal. We also thank Dr. Francis Lucazeau for kindly providing us his adopted version of the code for topographic corrections on the heat flow data. This work was supported by a bilateral scientific cooperation between the Russian Federation and Flanders, and by the Integration Project SB RAS no. 27. The multibeam mapping survey was conducted in the framework of the RAS Presidium Programme no. 21.8 and the FWO Flanders Project J. Poort was funded by a postdoctoral research assistantship of the Flemish Fund for Scientific Research (FWO-Vlaanderen). Constructive assessments by three anonymous referees are gratefully acknowledged.


  1. Balling N, Haenel R, Ungemach P, Vasseur G, Wheildon J (1981) Preliminary guidelines for heat flow density determination. Series Energy, Commission of the European Communities. Directorate-General Information and Innovation, LuxembourgGoogle Scholar
  2. Bohrmann G, Ivanov MK, Foucher J-P, Spiess V, Bialas J, Greinert J, Weinrebe W, Abegg F, Aloisi G, Artemov Y, Blinova V, Drews M, Heidersdorf F, Krabbenhöft A, Klaucke I, Krastel S, Leder T, Polikarpov I, Saburova M, Schmale O, Seifert R, Volkonskaya A, Zillmer M (2003) Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Mar Lett 23:239–249. doi: 10.1007/s00367-003-0157-7 CrossRefGoogle Scholar
  3. Bredehoeft JD, Papadopolous IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resource Res 1:325–328CrossRefGoogle Scholar
  4. Calais E, Lesne O, Déverchère J, San’kov V, Lukhnev A, Miroshnitchenko A, Buddo V, Levi K, Zalutzky V, Bashkuev Y (1998) Crustal deformation in the Baikal Rift from GPS measurements. Geophys Res Lett 25:4003–4006CrossRefGoogle Scholar
  5. Cuylaerts M, Naudts L, Casier R, Khabuev AV, Belousov OV, Kononov EE, Khlystov O, De Batist M (2012) Distribution and morphology of mud volcanoes and other fluid flow-related lake-bed structures in Lake Baikal, Russia. Geo-Mar Lett (in press)Google Scholar
  6. Davie MK, Zatsepina OY, Buffett BA (2004) Methane solubility in marine hydrate environments. Mar Geol 203:177–184CrossRefGoogle Scholar
  7. De Batist M, Klerkx J, Van Rensbergen P, Vanneste M, Poort J, Golmshtok AY, Kremlev AA, Khlystov OM, Krinitsky P (2002) Active hydrate destabilization in Lake Baikal, Siberia? Terra Nova 14:436–442CrossRefGoogle Scholar
  8. Egorov AV, Tsypkin GG (1999) Diffusive dispersion of natural gas hydrates in ocean sediments. Fluid Dyn 34:144–146CrossRefGoogle Scholar
  9. Egorov AV, Nigmatulin RI, Sagalevich AM, Rozhkov AN, Tsypkin GG (2011) Investigation of deep water gas hydrates with "Mir" submersibles during 2008–2010 expedition in Lake Baikal. In: Proc 7th Int Conf Gas Hydrates (ICGH 2011), 17–21 July 2011, Edinburgh.
  10. Eldholm O, Sundvor E, Vogt PR, Hjelstuen BO, Crane K, Nilsen AK, Gladczenko TP (1999) SW Barents Sea continental margin heat flow and Håkon Mosby Mud Volcano. Geo-Mar Lett 19:29–37. doi: 10.1007/s003670050090 CrossRefGoogle Scholar
  11. Feseker T, Foucher J-P, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247:194–207CrossRefGoogle Scholar
  12. Feseker T, Pape T, Wallmann K, Klapp SA, Schmidt-Schierhorn F, Bohrmann G (2009) The thermal structure of the Dvurechenskii mud volcano and its implications for gas hydrate stability and eruption dynamics. Mar Petrol Geol 26:1812–1823CrossRefGoogle Scholar
  13. Géli L, Lee TC, Cochran JR, Francheteau J, Abbott D, Labails C, Appriou D (2008) Heat flow from the Southeast Indian Ridge flanks between 80E and 140E: data review and analysis. J Geophys Res 113:B01101. doi: 10.1029/2007JB005001 CrossRefGoogle Scholar
  14. Golmshtok AY, Duchkov AD, Hutchinson DR, Khanukaev SB (2000) Heat flow and gas hydrates of the Baikal Rift Zone. Int J Earth Sci 89:193–211CrossRefGoogle Scholar
  15. Golubev VA (1995) Hydrothermal vents in Lake Baikal and the heat balance of the lake. Trans (Dokl) Russian Acad Sci Earth Sci Sect 328:27–32Google Scholar
  16. Granin NG, Granina LZ (2002) Gas hydrates and gas venting in Lake Baikal. Russian Geol Geophys 43:589–597Google Scholar
  17. Granin NG, Makarov MM, Kucher KM, Gnatovsky RY (2010) Gas seeps in Lake Baikal—detection, distribution, and implications for water column mixing. Geo-Mar Lett 30:399–409. doi: 10.1007/s00367-010-0201-3 CrossRefGoogle Scholar
  18. Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet Sci Lett 244:1–15CrossRefGoogle Scholar
  19. Grevemeyer I, Kopf AJ, Fekete N, Kaul N, Villinger HW, Heesemann M, Wallmann K, Spieß V, Gennerich HH, Muller M, Weinreb W (2004) Fluid flow through active mud dome Mound Culebra offshore Nicoya Peninsula, Costa Rica: evidence from heat flow surveying. Mar Geol 207:145–157CrossRefGoogle Scholar
  20. Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Lett 36:L18504. doi: 10.1029/2009GL039805 CrossRefGoogle Scholar
  21. Henninges J, Huenges E (2005) In situ thermal conductivity of gashydrate-bearing sediments of the Mallik 5L-38 well. J Geophys Res 110:B11206. doi: 10.1029/2005JB003734 CrossRefGoogle Scholar
  22. Henry P, Le Pichon X, Lallemant S, Lance S, Martin JB, Foucher J-P, Fiala-Médioni A, Rostek F, Guilhaumou N, Pranal V, Castrec M (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J Geophys Res 101:20297–20323CrossRefGoogle Scholar
  23. Hester KC, Brewer PG (2009) Clathrate hydrates in nature. Annu Rev Mar Sci 1:303–327CrossRefGoogle Scholar
  24. Hornbach MJ, Saffer DM, Holbrook WS, Van Avendonk HJA, Gorman AR (2008) Three-dimensional seismic imaging of the Blake Ridge methane hydrate province: evidence for large, concentrated zones of gas hydrate and morphologically driven advection. J Geophys Res 113:B07101. doi: 10.1029/2007JB005392 CrossRefGoogle Scholar
  25. INTAS Project 99–1669 Team (2002) A new bathymetric map of Lake Baikal. Renard Centre of Marine Geology (RCMG), Ghent University, Ghent, Open-file report, CD-ROMGoogle Scholar
  26. Kalmychkov GV, Egorov AV, Kuz’min MI, Khlystov OM (2006) Genetic types of methane from Lake Baikal. Dokl Earth Sci 411A:1462–1465CrossRefGoogle Scholar
  27. Khlystov OM (2006) New findings of gas hydrates in the Baikal bottom sediments. Russian Geol Geophys 47:979–981Google Scholar
  28. Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamashita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33:L24603. doi: 10.1029/2006GL028296 CrossRefGoogle Scholar
  29. Kida M, Hachikubo A, Sakagami H, Minami H, Krylov A, Yamashita S, Takahashi N, Shoji H, Khlystov O, Poort J, Narita H (2009) Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal. Geochem Geophys Geosyst 10:Q05003. doi: 10.1029/2009GC002473 CrossRefGoogle Scholar
  30. Kinoshita M, Kawada Y, Tanaka A, Urabe T (2006) Recharge/discharge interface of a secondary hydrothermal circulation in the Suiyo Seamount of the Izu-Bonin arc, identified by submersible-operated heat flow measurements. Earth Planet Sci Lett 245:498–508CrossRefGoogle Scholar
  31. Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorob’eva SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solov’ev VA, Grachev MA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Dokl Earth Sci 393A:1342–1346Google Scholar
  32. Klerkx J, De Batist M, Poort J, Hus R, Van Rensbergen P, Khlystov O, Granin N (2006) Tectonically controlled methane escape in Lake Baikal. In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. NATO Science Series. Springer, Berlin, pp 203–219. doi: 10.1007/1-4020-4471-2_17 CrossRefGoogle Scholar
  33. Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Nunokawa Y, Kida M, Shoji H, Naudts L, Poort J, Pogodaeva T (2008) First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia. Geophys Res Lett 35:L05405. doi: 10.1029/2007GL032917 CrossRefGoogle Scholar
  34. Krylov AA, Khlystov OM, Hachikubo A, Minami H, Nunokawa Y, Shoji H, Zemskaya TI, Naudts L, Pogodaeva TV, Kida M, Kalmychkov VG, Poort J (2010) Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin. Geo-Mar Lett 30:427–437. doi: 10.1007/s00367-010-0190-2 CrossRefGoogle Scholar
  35. Kuzmin MI, Kalmychkov GV, Geletij VF et al (1998) First find of gas hydrates in sediments of Lake Baikal. Trans (Dokl) Russian Acad Sci Earth Sci Sect 362:1029–1031Google Scholar
  36. Kvenvolden KA, Ginsburg GD, Soloviev VA (1993) Worldwide distribution of subaquatic gas hydrates. Geo-Mar Lett 13:32–40. doi: 10.1007/BF01204390 CrossRefGoogle Scholar
  37. Lee T-C, Duchkov AD, Morozov SG (2003) Determination of thermal conductivity and formation temperature from cooling history of friction-heated probes. Geophys J Int 152:433–442CrossRefGoogle Scholar
  38. Logatchev NA (1993) History and geodynamics of the Lake Baikal rift in the context of the Eastern Siberia rift system: a review. Bull Centres Rech Explor-Prod Elf Aquitaine 17:353–370Google Scholar
  39. Mats VD (1993) The structure and development of the Baikal rift depression. Earth Sci Rev 34:81–118CrossRefGoogle Scholar
  40. Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23:289–299. doi: 10.1007/s00367-003-0144-z CrossRefGoogle Scholar
  41. Max MD, Johnson A, Dillon WP (2006) Economic geology of natural gas hydrate. Springer, BerlinGoogle Scholar
  42. Mazurenko LL, Soloviev VA (2003) Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulations. Geo-Mar Lett 23:162–176. doi: 10.1007/s00367-003-0146-x CrossRefGoogle Scholar
  43. Paull CK, Normark WR, Ussler W III, Caress DW, Keaten R (2008) Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Mar Geol 250:258–275CrossRefGoogle Scholar
  44. Poort J, Klerkx J (2004) Absence of a regional surface thermal high in the Baikal Rift; new insights from detailed contouring of heat flow anomalies. Tectonophysics 383:217–241CrossRefGoogle Scholar
  45. Poort J, Kutas RI, Klerkx J, Beaubien SE, Lombardi S, Dimitrov L, Vassilev A, Naudts L (2007) Strong heat flow variability in an active shallow gas environment, Dnepr palaeo-delta, Black Sea. Geo-Mar Lett 27:185–195. doi: 10.1007/s00367-007-0072-4 CrossRefGoogle Scholar
  46. Rehder G, Kirby SH, Durham WB, Stern LA, Peltzer ET, Pinkston J, Brewer PG (2004) Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochim Cosmochim Acta 68:285–292CrossRefGoogle Scholar
  47. Riedel M, Tréhu AM, Spence GD (2010) Characterizing the thermal regime of cold vents at the northern Cascadia margin from bottom-simulating reflector distributions, heat-probe measurements and borehole temperature data. Mar Geophys Res 31:1–16. doi: 10.1007/s11001-010-9080-2 CrossRefGoogle Scholar
  48. Ruppel C, Dickens GR, Castellini DG, Gilhooly W, Lizarralde D (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys Res Lett 32:L04605. doi: 10.1029/2004GL021909 CrossRefGoogle Scholar
  49. Sloan EDJ (1998) Clathrate hydrates of natural gases. Marcel Dekker, New YorkGoogle Scholar
  50. Tryon MD, Brown KM, Torres ME, Tréhu AM, McManus J, Collier RW (1999) Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia. Geology 27:1075–1078CrossRefGoogle Scholar
  51. Soloviev VA, Ginsburg GD (1997) Water segregation in the course of gas hydrate formation and accumulation in submarine gas-seepage fields. Mar Geol 137:59–68CrossRefGoogle Scholar
  52. Vanneste M, Poort J, De Batist M, Klerkx J (2002) Atypical heat-flow near gas hydrate irregularities and cold seeps in the Baikal Rift Zone. Mar Petrol Geol 19:1257–1274CrossRefGoogle Scholar
  53. Van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30:631–634CrossRefGoogle Scholar
  54. Van Rensbergen P, Poort J, Kipfer R, De Batist M, Vanneste M, Klerkx J, Granin N, Khlystov O, Krinitsky P (2003) Evidence of near-surface sediment mobilization and methane venting in relation to hydrate dissociation in Southern Lake Baikal, Siberia. In: Van Rensbergen P, Hillis RR, Maltman AJ, Morley CK (eds) Subsurface sediment mobilization. Geol Soc Lond Spec Publ 216:207–221CrossRefGoogle Scholar
  55. Xu W, Ruppel C (1999) Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. J Geophys Res 104:5081–5096CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jeffrey Poort
    • 1
    • 9
  • Oleg M. Khlystov
    • 2
  • Lieven Naudts
    • 1
    • 10
  • Albert D. Duchkov
    • 3
  • Hitoshi Shoji
    • 4
  • Shin’ya Nishio
    • 6
  • Marc De Batist
    • 1
  • Akihiro Hachikubo
    • 4
  • Masato Kida
    • 4
    • 5
  • Hirotsugu Minami
    • 4
  • Andrey Y. Manakov
    • 7
  • Marina V. Kulikova
    • 8
  • Alexey A. Krylov
    • 8
  1. 1.Renard Centre of Marine GeologyGentBelgium
  2. 2.Limnological Institute, SB RASIrkutskRussia
  3. 3.Trofimuk Institute of Petroleum Geology and Geophysics, SB RASNovosibirskRussia
  4. 4.Kitami Institute of TechnologyKitamiJapan
  5. 5.National Institute of Advanced Industrial Science and TechnologyMethane Hydrate Research CenterToyohira-kuJapan
  6. 6.Shimizu CorporationKoto-kuJapan
  7. 7.Nikolaev Institute of Inorganic ChemistryNovosibirskRussia
  8. 8.I.S. Gramberg All-Russia Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)St. PetersburgRussia
  9. 9.ISTeP, UMR 7193 UPMC-CNRS, Univ. Paris 06ParisFrance
  10. 10.Management Unit of the North Sea Mathematical Models, RBINSOostendeBelgium

Personalised recommendations