Geo-Marine Letters

, Volume 32, Issue 5–6, pp 419–426 | Cite as

Raman spectroscopic and calorimetric observations on natural gas hydrates with cubic structures I and II obtained from Lake Baikal

  • Akihiro Hachikubo
  • Oleg Khlystov
  • Masato Kida
  • Hirotoshi Sakagami
  • Hirotsugu Minami
  • Satoshi Yamashita
  • Nobuo Takahashi
  • Hitoshi Shoji
  • Gennadiy Kalmychkov
  • Jeffrey Poort


This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5 kJ mol–1 for the southern basin samples (structure I), and of 54.3–55.5 kJ mol–1 for the structure I hydrates and 62.8–64.2 kJ mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.



We greatly appreciate the assistance of the shipboard crews of RV G. Yu. Vereshchagin during the Lake Baikal expeditions. We are grateful to Prof. A.V. Egorov and an anonymous reviewer for their constructive comments. The Lake Baikal gas hydrates were imported under license of the Minister of Agriculture, Forestry, and Fisheries according to the Plant Protection Act. This work was supported by funding agencies in Japan (Grant-in-Aid for Scientific Research 19550077, 21254006, 21360219, 22540485, and 23254008 from the Japan Society for the Promotion of Science), the Flemish Fund for Scientific Research (FWO-Vlaanderen), the Bilateral Flemish–Russian Federation Project, and the Integration Project of RAS SB 27.

Supplementary material

367_2012_285_MOESM1_ESM.pdf (118 kb)
ESM 1 (PDF 117 kb)


  1. Anderson GK (2004) Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation. J Chem Thermodyn 36:1119–1127. doi: 10.1016/j.jct.2004.07.005 CrossRefGoogle Scholar
  2. Deaton WM, Frost EM (1946) Gas hydrates and their relation to the operation of natural-gas pipe lines. US Bureau of Mines Monogr 8Google Scholar
  3. Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183. doi: 10.1016/S0012-821X(03)00325-X CrossRefGoogle Scholar
  4. Dorsey NE (1940) Properties of ordinary water-substance. Reinhold, New YorkGoogle Scholar
  5. Hachikubo A, Nakagawa R, Kubota D, Sakagami H, Takahashi N, Shoji H (2008) Dissociation heat of mixed-gas hydrate composed of methane and ethane. In: Proc 6th Int Conf Gas Hydrates, 6–10 July 2008, Vancouver.
  6. Hachikubo A, Kida M, Okuda M, Sakagami H, Shoji H (2009a) Dissociation heat of mixed-gas hydrate composed of methane and ethane (in Japanese with English abstract). Seppyo 71(5):341–351Google Scholar
  7. Hachikubo A, Sakagami H, Minami H, Nunokawa Y, Shoji H, Matveeva T, Jin YK, Obzhirov A (2009b) Isotopic composition and crystallographic properties of gas hydrate in the Sea of Okhotsk (in Japanese with English abstract). J Geogr 118(1):207–221CrossRefGoogle Scholar
  8. Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009c) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Lett 36:L18504. doi: 10.1029/2009GL039805 CrossRefGoogle Scholar
  9. Hachikubo A, Khlystov O, Krylov A, Sakagami H, Minami H, Nunokawa Y, Yamashita S, Takahashi N, Shoji H, Nishio S, Kida M, Ebinuma T, Kalmychkov G, Poort J (2010) Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. Geo-Mar Lett 30(3/4):321–329. doi: 10.1007/s00367-010-0203-1 CrossRefGoogle Scholar
  10. Handa YP (1986a) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodyn 18:891–902CrossRefGoogle Scholar
  11. Handa YP (1986b) Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. J Chem Thermodyn 18:915–921CrossRefGoogle Scholar
  12. Handa YP (1988) A calorimetric study of naturally occurring gas hydrates. Ind Eng Chem Res 27:872–874CrossRefGoogle Scholar
  13. Kalmychkov GV, Egorov AV, Kuz’min MI, Khlystov OM (2006) Genetic types of methane from Lake Baikal. Dokl Earth Sci 411A:1462–1465CrossRefGoogle Scholar
  14. Kang S-P, Lee H, Ryu B-J (2001) Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran). J Chem Thermodyn 33:513–521. doi: 10.1006/jcht.2000.0765 CrossRefGoogle Scholar
  15. Khlystov OM (2006) New findings of gas hydrates in the Baikal bottom sediments. Russ Geol Geophys 47:979–981Google Scholar
  16. Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamashita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33:L24603. doi: 10.1029/2006GL028296 CrossRefGoogle Scholar
  17. Kida M, Sakagami H, Takahashi N, Hachikubo A, Shoji H, Kamata Y, Ebinuma T, Narita H, Takeya S (2007) Estimation of gas composition and cage occupancies in CH4-C2H6 hydrates by CP-MAS 13 C NMR technique. J Jpn Petrol Inst 50:132–138. doi: 10.1627/jpi.50.132 CrossRefGoogle Scholar
  18. Kida M, Hachikubo A, Sakagami H, Minami H, Krylov A, Yamashita S, Takahashi N, Shoji H, Khlystov O, Poort J, Narita H (2009) Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal. Geochem Geophys Geosyst 10:Q05003. doi: 10.1029/2009GC002473 CrossRefGoogle Scholar
  19. Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorob’eva SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solov’ev VA, Grachev MA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Dokl Earth Sci 393A:1342–1346Google Scholar
  20. Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. Proc Natl Acad Sci USA 96(7):3420–3426CrossRefGoogle Scholar
  21. Lu H, Seo Y, Lee J, Moudrakovski I, Ripmeester JA, Chapman NR, Coffin RB, Gardner G, Pohlman J (2007) Complex gas hydrate from the Cascadia margin. Nature 445:303–306. doi: 10.1038/nature05463 CrossRefGoogle Scholar
  22. Manakov AY, Khlystov OM, Ogienko AG (2007) Unusual coexistence of cubic structure I and II natural gas hydrates in the same core mined at the K-2 mud volcano (Lake Baikal). paper presented at International Conference on Gas Hydrate Studies, Limnol. Inst., Russ. Acad. of Sci., Irkutsk, Russia, 3–8 SeptGoogle Scholar
  23. Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23(3/4):289–299. doi: 10.1007/s00367-003-0144-z CrossRefGoogle Scholar
  24. Poort J, Khlystov OM, Naudts L, Duchkov AD, Shoji H, Nishio S, De Batist M, Hachikubo A, Kida M, Minami H, Manakov AY, Kulikova MV, Krylov AA (2012) Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal. Geo-Mar Lett. doi: 10.1007/s00367-012-0292-0
  25. Rydzy MB, Schicks JM, Naumann R, Erzinger J (2007) Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy. J Phys Chem B 111:9539–9545. doi: 10.1021/jp0712755 CrossRefGoogle Scholar
  26. Sluijs A, Brinkhuis H, Schouten S, Bohaty SM, John CM, Zachos JC, Reichart G-J, Sinninghe Damsté JS, Crouch EM, Dickens GR (2007) Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450:1218–1221. doi: 10.1038/nature06400 CrossRefGoogle Scholar
  27. Subramanian S, Kini RA, Dec SF, Sloan ED Jr (2000a) Evidence of structure II hydrate formation from methane + ethane mixtures. Chem Eng Sci 55:1981–1999CrossRefGoogle Scholar
  28. Subramanian S, Ballard AL, Kini RA, Dec SF, Sloan ED Jr (2000b) Structural transitions in methane + ethane gas hydrates—part I: upper transition point and applications. Chem Eng Sci 55:5763–5771CrossRefGoogle Scholar
  29. Sum AK, Burruss RC, Sloan ED Jr (1997) Measurement of clathrate hydrates via Raman spectroscopy. J Phys Chem B 101:7371–7377CrossRefGoogle Scholar
  30. Uchida T, Takeya S, Kamata Y, Ikeda IY, Nagao J, Ebinuma T, Narita H, Zatsepina O, Buffett BA (2002) Spectroscopic observations and thermodynamic calculations on clathrate hydrates of mixed gas containing methane and ethane: determination of structure, composition and cage occupancy. J Phys Chem B 106:12426–12431. doi: 10.1021/jp025884i CrossRefGoogle Scholar
  31. van der Waals JH, Platteeuw JC (1959) Clathrate solutions. Adv Chem Phys 2:1–57CrossRefGoogle Scholar
  32. Van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30:631–634CrossRefGoogle Scholar
  33. Yoon J-H, Yamamoto Y, Komai T, Haneda H, Kawamura T (2003) Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind Eng Chem Res 42:1111–1114. doi: 10.1021/ie020598e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Akihiro Hachikubo
    • 1
  • Oleg Khlystov
    • 2
  • Masato Kida
    • 3
  • Hirotoshi Sakagami
    • 1
  • Hirotsugu Minami
    • 1
  • Satoshi Yamashita
    • 1
  • Nobuo Takahashi
    • 1
  • Hitoshi Shoji
    • 1
  • Gennadiy Kalmychkov
    • 4
  • Jeffrey Poort
    • 5
    • 6
  1. 1.Kitami Institute of TechnologyKitamiJapan
  2. 2.Limnological Institute, SB RASIrkutskRussia
  3. 3.Methane Hydrate Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
  4. 4.Vinogradov Institute of Geochemistry, SB RASIrkutskRussia
  5. 5.Renard Centre of Marine GeologyGhent UniversityGhentBelgium
  6. 6.Institut des Sciences de la Terre de Paris (ISTeP)Université Pierre et Marie Curie (UPMC Paris VI)Paris cedex 05France

Personalised recommendations