Geo-Marine Letters

, Volume 32, Issue 5–6, pp 489–499 | Cite as

Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin

  • Ingo Klaucke
  • Wilhelm Weinrebe
  • Peter Linke
  • Dirk Kläschen
  • Jörg Bialas


The central Chilean subduction zone between 35°S and 37°S was investigated in order to identify, document and possibly understand fluid flow and fluid venting within the forearc region. Several areas were mapped using multibeam bathymetry and backscatter, high-resolution sidescan sonar, chirp subbottom profiling and reflection seismic data. On a subsequent cruise ground-truthing observations were made using a video sled. In general, this dataset shows surprisingly little evidence of fluid venting along the mid-slope region, in contrast to other subduction zones such as Central America and New Zealand. There were abundant indications of active and predominantly fossil fluid venting along the upper slope between 36.5°S and 36.8°S at the seaward margin of an intraslope basin. Here, backscatter anomalies suggest widespread authigenic carbonate deposits, likely the result of methane-rich fluid expulsion. There is unpublished evidence that these fluids are of biogenic origin and generated within the slope sediments, similar to other accretionary margins but in contrast to the erosional margin off Central America, where fluids have geochemical signals indicating an origin from the subducting plate.


  1. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503CrossRefGoogle Scholar
  2. Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy JJ, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48CrossRefGoogle Scholar
  3. Behrmann JH (1992) Conditions for hydrofracture and the fluid permeability of accretionary prisms. Earth Plant Sci Lett 107:550–558CrossRefGoogle Scholar
  4. Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fuelled by methane from near-surface gas hydrates. Chem Geol 205:291–310CrossRefGoogle Scholar
  5. Buerk D, Klaucke I, Sahling H, Weinrebe W (2010) Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: result of fluid flow interaction with sedimentary processes. Mar Geol 275:53–65CrossRefGoogle Scholar
  6. Carson B, Screaton EJ (1998) Fluid flow in accretionary prisms: evidence for focused, time-variable discharge. Rev Geophys 36:329–352CrossRefGoogle Scholar
  7. Crutchley GJ, Geiger S, Pecher IA, Gorman AR, Zhu H, Henrys SA (2010) The potential influence of shallow gas and gas hydrates on sea floor erosion of Rock Garden, an uplifted ridge offshore of New Zealand. Geo-Mar Lett 30:283–303. doi:10.1007/s00367-010-0186-y CrossRefGoogle Scholar
  8. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  9. Dugan B, Flemings PB (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science 289:288–291CrossRefGoogle Scholar
  10. Faure K, Greinert J, Schneider von Deimling J, McGinnis DF, Kipfer R, Linke P (2010) Methane seepage along the Hikurangi Margin of New Zealand: geochemical and physical data from the water column, sea surface and atmosphere. Mar Geol 272:170–188CrossRefGoogle Scholar
  11. Geersen J, Völker D, Krastel-Gudegast S, Diaz J, Weinrebe RW, Behrmann JH (2011) Active tectonics of the South Chilean marine forearc (35°S – 40°S). Tectonics 30:TC3006. doi:10.1029/2010TC002777
  12. Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution and origin of authigenic lithologies. In: Paull CK, Dillon PW (eds) Natural gas hydrates: occurrence, distribution, and detection. AGU Geophys Monogr 124:99–113Google Scholar
  13. Greinert J, Lewis K, Bialas J, Pecher I, Rowden A, Linke P, De Batist M, Bowden D, Suess E (2010) Methane seepage along the Hikurangi Margin, New Zealand: review of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272:6–25CrossRefGoogle Scholar
  14. Heeschen KU, Tréhu AM, Collier RW, Suess E, Rehder G (2003) Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophys Res Lett 30:1643. doi:10.1029/2003GL016974 CrossRefGoogle Scholar
  15. Henry P, Le Pichon X, Lallemant S, Foucher JP, Westbrook GK, Hobart M (1990) Mud volcano field seaward of the Barbados Accretionary Complex: a deep towed sidescan sonar survey. J Geophys Res 95B:8917–8929CrossRefGoogle Scholar
  16. Henry P, Lallemant S, Nakamura K, Tsunogai U, Mazzotti S, Kobayashi K (2002) Surface expression of fluid venting at the toe of the Nankai wedge and implications for flow paths. Mar Geol 187:119–143CrossRefGoogle Scholar
  17. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica - a window to the subducting slab. Geology 32:201–204CrossRefGoogle Scholar
  18. Hubbert MK, Rubey WW (1959) Role of fluid pressure in the mechanics of overthrust faulting. I: mechanics of fluid filled porous solids and its applications to overthrust faulting. Geol Soc Am Bull 70:115–166CrossRefGoogle Scholar
  19. Johnson JE, Goldfinger C, Suess E (2003) Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin. Mar Geol 202:79–120CrossRefGoogle Scholar
  20. Kiel S (2009) Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21:279–284CrossRefGoogle Scholar
  21. Klaucke I, Sahling H, Bürk D, Weinrebe RW, Bohrmann G (2005) Mapping deep-water gas emissions with sidescan sonar. Eos 86:341–346CrossRefGoogle Scholar
  22. Klaucke I, Weinrebe RW, Petersen CJ, Bowen DA (2010) Temporal variability of gas seeps offshore New Zealand: multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Mar Geol 272:49–58CrossRefGoogle Scholar
  23. Kobayashi K (2002) Tectonic significance of the cold seepage zones in the Eastern Nankai Accretionary Wedge: an outcome of the 15 years’ KAIKO projects. Mar Geol 187:3–30CrossRefGoogle Scholar
  24. Kukowski N, Oncken O (2006) Subduction erosion—The “normal” mode of fore-arc material transfer along the Chilean Margin? In: Oncken O, Chong G, Franz G, Giese F, Götze H-J, Ramos VA, Strecker ME, Wigger P (eds) The Andes: active subduction orogeny. Springer, Berlin, pp 217–236Google Scholar
  25. Le Bas TP, Mason DC, Millard NW (1995) TOBI image processing - the state of the art. IEEE J Ocean Eng 20:85–93CrossRefGoogle Scholar
  26. Liebetrau V, Eisenhauer A, Linke P (2010) Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Mar Geol 272:307–318CrossRefGoogle Scholar
  27. Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia margin: numerical modelling and mass balances. Geochim Cosmochim Acta 67:3403–3421CrossRefGoogle Scholar
  28. Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E (2006) Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol 225:129–144CrossRefGoogle Scholar
  29. Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34:709–712CrossRefGoogle Scholar
  30. Miller SA (2002) Properties of large ruptures and the dynamical influence of fluids on earthquakes and faulting. J Geophys Res 107(B9):2182. doi:10.1029/2000JB00003 CrossRefGoogle Scholar
  31. Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135CrossRefGoogle Scholar
  32. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curray J (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967CrossRefGoogle Scholar
  33. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe RW, Vannucchi P, von Huene R, McIntosh K (2008) The hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9:Q03S04. doi:10.1029/2007GC001679 CrossRefGoogle Scholar
  34. Riedel M, Novosel I, Spence GD, Hyndman RD, Chapman NR, Solem RC, Lewis T (2006) Geophysical and geochemical signatures associated with gas hydrate related venting at the north Cascadia margin. Geol Soc Am Bull 118:23–38CrossRefGoogle Scholar
  35. Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe RW, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin off Costa Rica and Nicaragua. Geochem Geophys Geosyst 9:Q05S05. doi:10.1029/2008GC001978 CrossRefGoogle Scholar
  36. Sellanes J, Quiroga E, Neira C (2008) Megafaunal community structure and trophic relationships of the recently discovered Concepcion Methane Seep Area (Chile, 36°S). ICES J Mar Sci 65:1102–1111CrossRefGoogle Scholar
  37. Sellanes J, Neira C, Quiroga E, Teixido N (2010) Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats. Mar Ecol 31:111–124CrossRefGoogle Scholar
  38. Sommer S, Linke P, Pfannkuche O, Niemann H, Treude T (2010) Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand). Mar Geol 272:223–232CrossRefGoogle Scholar
  39. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi F (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321CrossRefGoogle Scholar
  40. Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochim Cosmochim Acta 67:3845–3857CrossRefGoogle Scholar
  41. Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge - unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85CrossRefGoogle Scholar
  42. Thornburg TM, Kulm LD, Hussong DM (1990) Submarine-fan development in the southern Chile Trench: a dynamic interplay of tectonics and sedimentation. Geol Soc Am Bull 102:1658–1680CrossRefGoogle Scholar
  43. Torres ME, McManus J, Hammond DE, de Angelis MA, Heeschen KU, Colbert SL, Tryon MD, Brown KM, Suess E (2002) Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: hydrological provinces. Earth Planet Sci Lett 201:525–540CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ingo Klaucke
    • 1
  • Wilhelm Weinrebe
    • 1
  • Peter Linke
    • 1
  • Dirk Kläschen
    • 1
  • Jörg Bialas
    • 1
  1. 1.GEOMAR | Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations