Advertisement

Geo-Marine Letters

, Volume 32, Issue 2, pp 139–151 | Cite as

Observed vs. predicted variability in non-algal suspended particulate matter concentration in the English Channel in relation to tides and waves

  • Aurélie Rivier
  • Francis Gohin
  • Philippe Bryère
  • Caroline Petus
  • Nicolas Guillou
  • Georges Chapalain
Original

Abstract

The study of water clarity is essential to understand variability in biological production, particularly in coastal seas. The spatial and temporal variability of non-algal suspended particulate matter (SPM) in surface waters of the English Channel was investigated and related to local forcing by means of a large satellite dataset covering the study area with a spatial resolution of 1.2 km and a daily temporal resolution. This analysed dataset is a time series of non-algal SPM images derived from MODIS and MERIS remote-sensing reflectance by application of an IFREMER semi-analytical algorithm over the period 2003–2009. In a first step, the variability of time series of MODIS images was analysed through temporal autocorrelation functions. Then, non-algal SPM concentrations were assessed in terms of site-specific explanatory variables such as tides, wind-generated surface-gravity wave amplitudes and chlorophyll-a (Chl-a), based on three statistical models with fitting parameters calibrated on a dataset of merged MERIS/MODIS images gathered from 2007 to 2009 over the whole English Channel. Correlogram analysis and the first model highlight the local patterns of the influence of the tide, especially the neap–spring cycle, on non-algal surface SPM. Its effect is particularly strong in the central and eastern English Channel and in the western coastal areas. The second model shows that waves prevail as driver at the entrance of the English Channel. The most sophisticated of the three statistical models, although involving only three explanatory variables—the tide, waves and Chl-a—is able to estimate non-algal surface SPM with a coefficient of determination reaching 70% at many locations.

Keywords

Suspended Particulate Matter Suspended Particulate Matter Concentration Water Column Stratification Spring Tidal Cycle Surface Suspended Particulate Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the MyOcean (European Commission) project and the Space Agencies for providing ocean colour data from MODIS (NASA) and MERIS (ESA), and to the IOWAGA (European Commission) and PREVIMER (French National Pilot Project of Coastal Oceanography) projects for providing wave data. The raw MODIS data were provided by the MarCoast2 project (ESA). This paper is also a contribution to the CHannel integrated Approach for marine Resource Management (CHARM) Phase 3 project (INTERREG IV A France (Channel) – England cross-border European cooperation programme, co-financed by the European Regional Development Fund). David Bowers (Bangor University, UK) is warmly thanked for his help in reading and improving the final manuscript. Quinten Vanhellemont (Management Unit of the North Sea Mathematical Models, Belgium) is acknowledged for providing satellite products generated by the algorithm of B. Nechad and colleagues. The authors acknowledge constructive assessments by two anonymous reviewers.

References

  1. Ardhuin F, Rogers E, Babanin AV, Filipot J, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre JM, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J Phys Oceanogr 40(9):1917–1941CrossRefGoogle Scholar
  2. Babin M, Morel A, Fournier-Sicre V, Fell F, Stramski D (2003) Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol Oceanogr 48(2):843–859CrossRefGoogle Scholar
  3. Bow S (1984) Pattern recognition. Marcel Dekker, New YorkGoogle Scholar
  4. Bowers DG (2003) A simple turbulent energy-based model of fine sediments in the Irish Sea. Cont Shelf Res 23:1495–1505CrossRefGoogle Scholar
  5. Bowers DG, Binding CE (2006) The optical properties of mineral suspended particles: a review and synthesis. Estuar Coastal Shelf Sci 67(1/2):219–230. doi: 10.1016/j.ecss.2005.11.010 CrossRefGoogle Scholar
  6. Bowers DG, Boudjelas S, Marker GEL (1998) The distribution of fine suspended sediments in the surface waters of the Irish Sea and its relation to tidal stirring. Int J Remote Sensing 19(14):2789–2805CrossRefGoogle Scholar
  7. Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microbial Ecol 51(1):1–11. doi: 10.3354/ame01187 CrossRefGoogle Scholar
  8. Ellis KM, Binding CE, Bowers DG, Jones SE, Simpson JH (2008) A model of turbidity maximum maintenance in the Irish Sea. Estuar Coastal Shelf Sci 76(4):765–774. doi: 10.1016/j.ecss.2007.08.020 CrossRefGoogle Scholar
  9. Garreau P (1997) Caractéristiques hydrodynamiques de la Manche. Oceanis 23(1):65–88Google Scholar
  10. Gohin F (2011) Annual cycles of chlorophyll-a, non-algal suspended particulate matter and turbidity observed from space and in-situ in coastal waters. Ocean Sci 7:705–732. doi: 10.5194/os-7-705-2011 CrossRefGoogle Scholar
  11. Gohin F, Druon JN, Lampert L (2002) A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by Seadas in coastal waters. Int J Remote Sensing 23:1639–1661CrossRefGoogle Scholar
  12. Gohin F, Loyer S, Lunven M, Labry C, Froidefond JM, Delmas D, Huret M, Herbland A (2005) Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay. Remote Sensing Environ 95(1):29–46CrossRefGoogle Scholar
  13. Guillou N (2007) Rôles de l’hétérogénéité des sédiments de fond et des interactions houle-courant sur l’hydrodynamique et la dynamique sédimentaire en zone subtidale - applications en Manche orientale et à la pointe de la Bretagne. PhD Thesis, Université de Bretagne Occidentale, BrestGoogle Scholar
  14. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Paleontologia Electronica 4(1):1–9Google Scholar
  15. Huret M, Gohin F, Delmas D, Lunven M, Garcon V (2007) Use of SeaWiFS data for light availability and parameter estimation of a phytoplankton production model of the Bay of Biscay. J Mar Systems 65(1/4):509–531CrossRefGoogle Scholar
  16. Lafite R, Shimwell S, Grochowski N, Dupont J-P, Nash L, Salomon J-C, Cabioch L, Collins M, Gao S (2000) Suspended particulate matter fluxes through the Straits of Dover, English Channel: observations and modelling. Oceanol Acta 23(6):687–700CrossRefGoogle Scholar
  17. Lubac B, Loisel H (2007) Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea. Remote Sensing Environ 110:45–58CrossRefGoogle Scholar
  18. Maerz J, Wirtz K (2009) Resolving physically and biologically driven suspended particulate matter dynamics in a tidal basin with a distribution-based model. Estuar Coastal Shelf Sci 84(1):128–138. doi: 10.1016/j.ecss.2009.05.015 CrossRefGoogle Scholar
  19. Ménesguen A, Gohin F (2006) Observation and modelling of natural retention structures in the English Channel. J Mar Systems 63(3/4):244–256CrossRefGoogle Scholar
  20. Météo-France (1991) Données et statistiques n°11, zones inter services mer, tome 1, Manche et Atlantique. Direction de la météorologie nationale, service central exploitation, ParisGoogle Scholar
  21. Nechad B, Ruddick KG, Park Y (2010) Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing Environ 114:854–866CrossRefGoogle Scholar
  22. Neukermans G, Ruddick K, Bernard E, Ramon D, Nechad B, Deschamps PY (2009) Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea. Opt Express 17(16):14029–14052CrossRefGoogle Scholar
  23. Pejrup M (1986) Parameters affecting fine-grained suspended sediment concentrations in a shallow micro-tidal estuary, Ho-Bugt, Denmark. Estuar Coastal Shelf Sci 22:241–254CrossRefGoogle Scholar
  24. Petus C, Chust G, Gohin F, Doxaran D, Froidefond J, Sagarminaga Y (2010) Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont Shelf Res 30(5):379–392CrossRefGoogle Scholar
  25. Pingree RD, Griffiths DK (1978) Tidal fronts on the shelf seas around the British Isles. J Geophys Res 83:4165–4622CrossRefGoogle Scholar
  26. Salomon JC, Breton M (1993) An atlas of long-term currents in the Channel. Oceanol Acta 16(5/6):439–448Google Scholar
  27. Saulquin B, Gohin F, Garrello R (2011) Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS chlorophyll-a data from 1998 to 2008 on the European Atlantic shelf. IEEE Trans Geosci Remote Sensing 49(1):143–154CrossRefGoogle Scholar
  28. SHOM (2000) Courants de marée et hauteurs d’eau. La Manche de Dunkerque à Brest. Service Hydrographique et Océanographique de la Marine, Brest, Rapport 564-UJAGoogle Scholar
  29. Tolman HL (2008) A mosaic approach to wind wave modeling. Ocean Modell 25(1/2):35–47CrossRefGoogle Scholar
  30. van der Molen J, Bolding K, Greenwood N, Mills DK (2009) A 1-D vertical multiple grain size model of suspended particulate matter in combined currents and waves in shelf seas. J Geophys Res 114:F01030. doi: 10.1029/2008JF001150 CrossRefGoogle Scholar
  31. Vanhoutte-Brunier A, Fernand L, Ménesguen A, Lyons S, Gohin F, Cugier P (2008) Modelling the Karenia mikimotoi bloom that occurred in the western English Channel during summer 2003. Ecol Modell 210(4):351–376CrossRefGoogle Scholar
  32. Velegrakis AF, Gao S, Lafite R, Dupont JP, Huault MF, Nash LA, Collins MB (1997) Resuspension and advection processes affecting suspended particulate matter concentrations in the central English Channel. J Sea Res 38(1/2):17–34CrossRefGoogle Scholar
  33. Velegrakis AF, Michel D, Collins MB, Lafite R, Oikonomou EK, Dupont JP, Huault MF, Lecouturier M, Salomon JC, Bishop C (1999) Sources, sinks and resuspension of suspended particulate matter in the eastern English Channel. Cont Shelf Res 19(15/16):1933–1957CrossRefGoogle Scholar
  34. Weeks AR, Simpson JH, Bowers D (1993) The relationship between concentrations of suspended particulate material and tidal processes in the Irish sea. Cont Shelf Res 13(12):1325–1334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aurélie Rivier
    • 2
    • 1
  • Francis Gohin
    • 1
  • Philippe Bryère
    • 3
  • Caroline Petus
    • 1
  • Nicolas Guillou
    • 2
  • Georges Chapalain
    • 2
  1. 1.IFREMER, Laboratoire d’écologie pélagique, DYNECO PELAGOSPlouzanéFrance
  2. 2.Centre d’Etudes Techniques Maritimes et Fluviales (CETMEF), Laboratoire de Génie Côtier et Environnement (LGCE)PlouzanéFrance
  3. 3.ACRIBrestFrance

Personalised recommendations