Geo-Marine Letters

, Volume 32, Issue 1, pp 73–84 | Cite as

Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex

  • T. M. HillEmail author
  • C. K. Paull
  • R. B. Critser


The Storegga Slide complex is a multi-stage slope failure on the Norwegian continental margin where the most recent major event occurred 8.1 ka b.p. (calendar years before present). Its northern flank contains pockmark features that are commonly inferred to be related to the historical and modern venting of methane-bearing fluids. Three jumbo piston cores (JPC), one from a pockmark and two background cores at variable distances from this site (proximal, 5 km, and distal, 15 km) on the northern flank of the slide (806–1,524 m water depths), were sampled at 10 cm resolution to assess the geologic record of methane venting in the Nyegga pockmark field. Six down-core radiocarbon measurements on mixed planktonic foraminifer species reveal ages of 9.4–16.4 ka b.p. Bathymodiolus mussel shell horizons, indicators of methane-rich environments, have been dated at 15.8–17.6 and ~22 ka b.p. in the pockmark core. Stable isotope analyses on planktonic (Neogloboquadrina pachyderma sinistral) and benthic (Islandiella norcrossi, Melonis barleeanum) Foraminifera reveal δ18O values indicative of a clear glacial/deglacial transition (−1.5‰ shift in planktonic species). Both planktonic and benthic δ13C signatures record multiple excursions, interpreted to reflect the influence of methane in the environment; these δ13C excursions occur in the pockmark core and also in the distal background core. While authigenic calcite formation on the seafloor may play an important role in producing such excursions, these data together suggest the influence of methane seepage within the pockmark field over the past 25 ka, whereby seepage was particularly active between 13 and 15 ka. This is consistent with previously inferred regional increases in porewater pressure associated with glacial loading and higher sedimentation rates, which can cause gas hydrate and slope instability.


Dissolve Inorganic Carbon Benthic Foraminifer Planktonic Foraminifer Authigenic Carbonate Methane Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the scientific party and crew of the R/V Knorr during the Storegga research cruise of 2004. Support was provided by the American Chemical Society Petroleum Research Fund (grant 46345-G2), the Geological Society of America Graduate Student Research Grant program (Critser), the National Science Foundation (OCE-0221366), and the David and Lucile Packard Foundation. Technical assistance was provided by D. Winter at the University of California Davis, and T. Guilderson and the staff of the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry. Comments by J. Kennett, M.J. Owen, M. Hovland, T. de Garidel-Thoron, three anonymous reviewers, and the journal editors improved the manuscript. This publication is a contribution of the Bodega Marine Laboratory, University of California at Davis.

Supplementary material

367_2011_258_MOESM1_ESM.pdf (44 kb)
Esm 1 (PDF 44.4 kb)


  1. Andreassen K, Nilssen EG, Ødegaard CM (2007) Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data. Geo-Mar Lett 27:155–171. doi: 10.1007/s00367-007-0071-5 CrossRefGoogle Scholar
  2. Barry JP, Buck KR, Kochevar RK, Nelson DC, Fujiwara Y, Goffredi SK, Hashimoto J (2002) Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invert Biol 121:47–54CrossRefGoogle Scholar
  3. Bauch HA, Weinelt MS (1997) Surface water changes in the Norwegian Sea during the last deglacial and Holocene times. Quat Sci Rev 16:1115–1124CrossRefGoogle Scholar
  4. Bauch HA, Erlenkeuser H, Spielhagen RF, Struck U, Matthiessen J, Thiede J, Heinemeier J (2001) A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quat Sci Rev 20:659–678CrossRefGoogle Scholar
  5. Bernhard JM, Buck KR, Barry JP (2001) Monterey Bay cold-seep biota: assemblages, abundance and ultrastructure of living foraminifera. Deep-Sea Res 48:2233–2249CrossRefGoogle Scholar
  6. Borowski WS, Paull CK, Ussler W III (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying gas hydrates. Mar Geol 159:131–154CrossRefGoogle Scholar
  7. Brown HE, Holbrook W, Hornbach MJ, Nealon J (2006) Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar Geol 229:179–186CrossRefGoogle Scholar
  8. Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga Slide. Mar Petrol Geol 22:11–19CrossRefGoogle Scholar
  9. Bugge T, Befring S, Belderson RH, Eidvin T, Jansen E, Kenyon NH, Holtedahl H, Sejrup HP (1987) A giant three-stage submarine slide off Norway. Geo-Mar Lett 7:191–198. doi: 10.1007/BF02242771 CrossRefGoogle Scholar
  10. Bünz S, Mienert J (2004) Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J Geophys Res 109:B04102. doi: 10.1029/2003JB002863 CrossRefGoogle Scholar
  11. Bünz S, Mienert J, Berndt C (2003) Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet Sci Lett 209:291–307CrossRefGoogle Scholar
  12. Bünz S, Mienert J, Vanneste M, Andreassen K (2005) Gas hydrates at the Storegga Slide: constraints from an analysis of multicomponent, wide-angle seismic data. Geophysics 70:B19–B34CrossRefGoogle Scholar
  13. Cavanaugh CM, Wirsen CO, Jannasch HW (1992) Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia, Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58:3799–3803Google Scholar
  14. Chappell J, Shackleton NJ (1986) Oxygen isotopes and sea level. Nature 324:137–140CrossRefGoogle Scholar
  15. Chen Y, Ussler W, Haflidason H, Lepland A, Rise L, Hovland M, Hjelstuen B (2010) Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway. Chem Geol 275:127–138CrossRefGoogle Scholar
  16. Cook MS, Keigwin LD, Birgel D, Hinrichs K-U (2011) Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea. Paleoceanography 26:PA2210. doi: 10.1029/2010PA001993 CrossRefGoogle Scholar
  17. De Boever E, Huysmans M, Muchez P, Dimitrov L, Swennen R (2009a) Controlling factors on the morphology and spatial distribution of methane-related tubular concretions – Case study of an Early Eocene seep system. Mar Petrol Geol 26:1580–1591CrossRefGoogle Scholar
  18. De Boever E, Birgel D, Thiel V, Muchez P, Peckmann J, Dimitrov L, Swennen R (2009b) The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils (Lower Eocene, Varna, Bulgaria). Palaeogeogr Palaeoclimatol Palaeoecol 280:23–36CrossRefGoogle Scholar
  19. de Garidel-Thoron T, Beaufort L, Bassinot F, Henry P, Kennett JP (2004) Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. Proc Natl Acad Sci USA 101(25):9187–9192CrossRefGoogle Scholar
  20. Dickens GR, Paull CK, Wallace P, OOP Leg 164 Scientific Party (1997) Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385:426–428CrossRefGoogle Scholar
  21. Epstein S, Buchsbaum R, Lowenstam H, Urey H (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1325CrossRefGoogle Scholar
  22. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record—influence of glacial melting rates on the Younger Dryas event and deep-sea circulation. Nature 342:637–642CrossRefGoogle Scholar
  23. Fisher CR, Childress JJ (1992) Organic carbon transfer from methanotrophic symbionts to the host hydrocarbon-seep mussel. Symbiosis 12:221–235Google Scholar
  24. Haflidason H, Eiríksson J, van Kreveld S (2000) The tephrochronology of Iceland and the North Atlantic region during the middle and late quaternary: a review. J Quat Sci 15:3–22CrossRefGoogle Scholar
  25. Haflidason H, Sejrup HP, Nygård A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson D (2004) The Storegga Slide: architecture, geometry and slide development. Mar Geol 213:201–234CrossRefGoogle Scholar
  26. Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga Slide. Mar Petrol Geol 22:123–136CrossRefGoogle Scholar
  27. Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Morgans Bell HS, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406:392–395CrossRefGoogle Scholar
  28. Hill TM, Kennett JP, Spero HJ (2003) Foraminifera as indicators of methane-rich environments: a study of modern methane seeps in Santa Barbara Channel, California. Mar Micropaleontol 49:123–138CrossRefGoogle Scholar
  29. Hill TM, Kennett JP, Valentine DL (2004) Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochim Cosmochim Acta 68:4619–4627CrossRefGoogle Scholar
  30. Hill TM, Kennett JP, Valentine DL, Yang Z, Reddy CM, Nelson RK, Behl RJ, Robert C, Beaufort L (2006) Climatically driven emissions of hydrocarbons from marine sediments during deglaciation. Proc Natl Acad Sci 103:13570–13574CrossRefGoogle Scholar
  31. Hjelstuen BO, Sejrup HP, Haflidason H, Nygård A, Ceramicola S, Bryn P (2005) Late Cenozoic glacial history and evolution of the Storegga Slide area and adjacent slide flank regions, Norwegian continental margin. Mar Petrol Geol 22:57–69CrossRefGoogle Scholar
  32. Hjelstuen BO, Haflidason H, Sejrup HP, Nygård A (2010) Sedimentary and structural control on pockmark development—evidence from the Nyegga pockmark field, NW European margin. Geo-Mar Lett 30:221–230. doi: 10.1007/s00367-009-0172-4 CrossRefGoogle Scholar
  33. Hovland M (1981) Characteristics of pockmarks in the Norwegian Trench. Mar Geol 39:103–117CrossRefGoogle Scholar
  34. Hovland M, Judd AG (1988) Seabed pockmarks and seepages. Graham and Trotman, LondonGoogle Scholar
  35. Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fosså JH, Jonsson R, Rueslåtten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206CrossRefGoogle Scholar
  36. Hughen KA, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormac FG, Manning S, Ramsey CB, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plight J, Weyhenmeyer CE (2004) Marine04 Marine radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1059–1086Google Scholar
  37. Hustoft S, Dugan B, Mienert J (2009) Effects of rapid sedimentation on developing the Nyegga pockmark field: constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. Geochem Geophys Geosyst 10(6):Q06012. doi: 10.1029/2009GC002409 CrossRefGoogle Scholar
  38. Jahren AH, Arens NC, Sarmiento G, Guerro J, Amundson R (2001) Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29:159–162CrossRefGoogle Scholar
  39. Judd A, Hovland M (2007) Seabed fluid flow. The impact on geology, biology and the marine environment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Judd AG, Hovland M, Dimitrov LI, Garcia Gil S, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126CrossRefGoogle Scholar
  41. Katz ME, Pak DK, Dickens GR, Miller KG (1999) The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum. Science 286:1531–1533CrossRefGoogle Scholar
  42. Keigwin LD (2002) Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California. J Oceanogr 58:421–432CrossRefGoogle Scholar
  43. Kennedy MJ, Christie-Blick N, Sohl LE (2001) Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology 29:443–446CrossRefGoogle Scholar
  44. Kennedy MJ, Mrofka DD, von der Borch C (2008) Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453:642–645CrossRefGoogle Scholar
  45. Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229CrossRefGoogle Scholar
  46. Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288:128–133CrossRefGoogle Scholar
  47. Klitgaard-Kristensen D, Sejrup HP, Haflidason H (2001) The last 18 kya fluctuations in Norwegian Sea surface conditions and implications for the magnitude of climate change: evidence from the North Sea. Paleoceanography 16:455–467CrossRefGoogle Scholar
  48. Knudsen KL, Jiang H, Jansen E, Eiríksson J, Heinemeier J, Seidenkrantz M-S (2004) Environmental changes off North Iceland during the deglaciation and the Holocene: foraminifera, diatoms and stable isotopes. Mar Micropaleontol 50:273–305CrossRefGoogle Scholar
  49. Kvalstad TJ, Andresen L, Forsberg CF, Berg K, Bryn P, Wangen M (2005) The Storegga slide: evaluation of triggering sources and slide mechanics. Mar Petrol Geol 22:245–256CrossRefGoogle Scholar
  50. Kvenvolden KA, Ginsburg GD, Soloviev VA (1993) Worldwide distribution of subaquatic gas hydrate. Geo-Mar Lett 13:32–40. doi: 10.1007/BF01204390 CrossRefGoogle Scholar
  51. Lawrence GWM, Cartwright JA (2010) The stratigraphic and geographic distribution of giant craters and remobilized sediment mounds on the mid Norway margin, and their relation to long-term fluid flow. Mar Petrol Geol 27:733–747CrossRefGoogle Scholar
  52. Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64CrossRefGoogle Scholar
  53. Lessard-Pilon S, Porter MD, Cordes EE, MacDonald I, Fisher CR (2010) Community composition and temporal change at deep Gulf of Mexico cold seeps. Deep-Sea Res II 57:1891–1903CrossRefGoogle Scholar
  54. Lewis KB, Marshall BA (1996) Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins. N Z J Geol Geophys 39:191–200CrossRefGoogle Scholar
  55. Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geology 32:53–56CrossRefGoogle Scholar
  56. Meland MY, Dokken T, Jansen E, Hevrøy K (2008) Water mass properties and exchange between the Nordic seas and the northern North Atlantic during 23–6 ka: benthic oxygen isotopic evidence. Paleoceanography 23:PA1210. doi: 10.1029/2007PA001416 CrossRefGoogle Scholar
  57. Mienert J, Posewang J, Baumann M (1998) Gas hydrates along the north-eastern Atlantic Margin: possible hydrate bound margin instability and possible release of methane. In: Henriet JP, Mienert J (eds) Gas hydrates: relevance to world margin stability and climatic change. Geol Soc Lond Spec Publ 137:275–292Google Scholar
  58. Mienert J, Vanneste M, Bünz S, Andreassen K, Haflidason H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Petrol Geol 22:233–244CrossRefGoogle Scholar
  59. Millo C, Sarnthein M, Erlenkeuser H, Frederichs T (2005) Methane-driven late Pleistocene δ13C minima and overflow reversals in the southwestern Greenland Sea. Geology 33:873–876CrossRefGoogle Scholar
  60. Owen M, Day S, Maslin M (2007) Late Pleistocene submarine mass movements: occurrence and causes. Quat Sci Rev 26:958–978CrossRefGoogle Scholar
  61. Padden M, Weissert H, de Rafelis M (2001) Evidence for Late Jurassic release of methane from gas hydrate. Geology 29:223–226CrossRefGoogle Scholar
  62. Palfy J, Demeny A, Haas J, Hetenyi M, Orchard MJ, Veto I (2001) Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050CrossRefGoogle Scholar
  63. Paull CK, Ussler W III (2001) History and significance of gas sampling during the DSDP and ODP. In: Paull CK, Dillon WB (eds) Natural gas hydrates: occurrence, distribution and detection. Am Geophys Union Monogr 124:53–66Google Scholar
  64. Paull CK, Ussler W, Dillon WP (1991) Is the extent of glaciation limited by marine gas-hydrates? Geophys Res Lett 18:432–434CrossRefGoogle Scholar
  65. Paull CK, Buelow W, Ussler W III, Borowski WS (1996) Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology 24:143–146CrossRefGoogle Scholar
  66. Paull CK, Ussler W III, Peltzer ET, Brewer P, Keaten R, Mitts P, Nealon J, Greinert J, Herguera JC, Perez E (2007a) Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California. Deep-Sea Res II 54:1240–1267. doi: 10.1016/j.dsr2.2007.04.009 CrossRefGoogle Scholar
  67. Paull CK, Ussler W III, Holbrook W (2007b) Assessing methane release from the colossal Storegga submarine landslide. Geophys Res Lett 34:L04601. doi: 10.1029/2006GL028331 CrossRefGoogle Scholar
  68. Paull CK, Ussler W III, Holbrook WS, Hill TM, Keaten R, Mienert J, Haflidason H, Johnson JE, Winters WJ, Lorenson TD (2008) Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Mar Lett 28:43–51. doi: 10.1007/s00367-007-0088-9 CrossRefGoogle Scholar
  69. Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467CrossRefGoogle Scholar
  70. Plaza-Faverola A, Westbrook GK, Ker S, Exley RJK, Gailler A, Minshull TA, Broto K (2010) Evidence from three-dimensional seismic tomography for a substantial accumulation of gas hydrate in a fluid-escape chimney in the Nyegga pockmark field, offshore Norway. J Geophys Res 115:B08104. doi: 10.1029/2009JB007078 CrossRefGoogle Scholar
  71. Plaza-Faverola A, Bünz S, Mienert J (2011) Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet Sci Lett 305:297–308CrossRefGoogle Scholar
  72. Posewang J, Mienert J (1999) High-resolution seismic studies of gas hydrates west of Svalbard. Geo-Mar Lett 19:150–156. doi: 10.1007/s003670050102 CrossRefGoogle Scholar
  73. Rasmussen TL, Thomas E, Labeyrie L, van Weering TCE (1996) Circulation changes in the Faeroe-Shetland Channel correlating with cold events during the last glacial period (58–10 ka). Geology 24:937–940CrossRefGoogle Scholar
  74. Rathburn AE, Levin LA, Held Z, Lohmann KC (2000) Benthic foraminifera associated with cold methane seeps on the northern California margin: ecology and stable isotopic composition. Mar Micropaleontol 38:247–266CrossRefGoogle Scholar
  75. Rørvik K-L, Laberg JS, Hald M, Ravna EK, Vorren TO (2010) Behavior of the northwestern part of the Fennoscandian Ice Sheet during the Last Glacial Maximum – a response to external forcing. Quat Sci Rev 29:2224–2237CrossRefGoogle Scholar
  76. Schrag DP, Adkins JF, McIntyre K, Alexander JL, Hodell DA, Charles C, McManus J (2002) The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat Sci Rev 21:331–342CrossRefGoogle Scholar
  77. Sen Gupta B, Platon E, Bernard JM, Aharon P (1997) Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. J Foram Res 27:292–300CrossRefGoogle Scholar
  78. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold seep communities at active and passive margins. Deep-Sea Res II 45:517–567CrossRefGoogle Scholar
  79. Sikes EL, Keigwin LD (1996) A re-examination of northeast Atlantic sea surface temperature and salinity over the last 16 kyr. Paleoceanography 11:327–342CrossRefGoogle Scholar
  80. Smith LM, Sachs JP, Jennings AE, Anderson DM, de Vernal A (2001) Light δ13C events during deglaciation of the East Greenland continental shelf attributed to methane release from gas hydrates. Geophys Res Lett 28:2217–2220CrossRefGoogle Scholar
  81. Solheim A, Berg K, Forsberg C, Bryn P (2005) The Storegga Slide complex: repetitive large scale sliding with similar cause and development. Mar Petrol Geol 22:97–107CrossRefGoogle Scholar
  82. Stott LD, Bunn T, Prokopenko M, Mahn C, Gieskes J, Bernhard JM (2002) Does the oxidation of methane leave an isotopic fingerprint in the geologic record? Geochem Geophys Geosyst 3:2. doi: 10.1029/2001GC000196 CrossRefGoogle Scholar
  83. Stuiver M, Grootes PM (2000) GISP2 oxygen isotope ratios. Quat Res 53:277–284CrossRefGoogle Scholar
  84. Stuiver M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19:355–363Google Scholar
  85. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  86. Thornalley DJR, McCave IN, Elderfield H (2009) Freshwater input and abrupt deglacial climate change in the North Atlantic. Paleoceanography 25:1201. doi: 10.1029/2009PA001772 Google Scholar
  87. Torres ME, Mix AC, Kinports K, Haley B, Klinkhammer GP, McManus J, de Angelis MA (2003) Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography 18:1062. doi: 10.1029/2002PA000824 CrossRefGoogle Scholar
  88. Torres ME, Martin RA, Klinkhammer GP, Nesbitt EA (2010) Post depositional alteration of foraminiferal shells in cold seep settings: new insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth Planet Sci Lett 299:10–22CrossRefGoogle Scholar
  89. Uchida M, Ohkushi K, Kimoto K, Inagaki F, Ishimura T, Tsunogai U, TuZino T, Shibata Y (2008) Radiocarbon-based carbon source quantification of anomalous isotopic foraminifera in last glacial sediments in the western North Pacific. Geochem Geophys Geosyst 9:Q04N14. doi: 10.1029/2006GC001558 CrossRefGoogle Scholar
  90. Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick KE, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno JL, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Res I 50:281–300CrossRefGoogle Scholar
  91. Vidal L, Labeyrie L, Cortijo E, Arnold M, Duplessy JC, Michel E, Becqué S, van Weering TCE (1997) Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet Sci Lett 146:13–27CrossRefGoogle Scholar
  92. Vogt PR, Gardner J, Crane K (1999a) The Norwegian-Barents-Svalbard (NBS) continental margin: introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane. Geo-Mar Lett 19:2–21. doi: 10.1007/s003670050088 CrossRefGoogle Scholar
  93. Vogt PR, Gardner J, Crane K, Sundvor E, Bowles F, Cherkashev G (1999b) Ground-truthing 11- to 12-kHz side-scan sonar imagery in the Norwegian-Greenland Sea: Part I: Pockmarks on the Vestnesa Ridge and Storegga slide margin. Geo-Mar Lett 19:97–110. doi: 10.1007/s003670050098 CrossRefGoogle Scholar
  94. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305CrossRefGoogle Scholar
  95. Wefer G, Heinz PM, Berger WH (1994) Clues to ancient methane release. Nature 369:282CrossRefGoogle Scholar
  96. Wiedicke M, Weiss W (2006) Stable carbon isotope records of carbonates tracing fossil seep activity off Indonesia. Geochem Geophys Geosyst 7:Q11009. doi: 10.1029/2006GC001292 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Geology and Bodega Marine LaboratoryUniversity of CaliforniaDavisUSA
  2. 2.Monterey Bay Aquarium Research InstituteMoss LandingUSA

Personalised recommendations