Geo-Marine Letters

, Volume 31, Issue 5–6, pp 405–417 | Cite as

Variations in bottom water activity at the southern Argentine margin: indications from a seismic analysis of a continental slope terrace

  • Jens GruetznerEmail author
  • Gabriele Uenzelmann-Neben
  • Dieter Franke


Continental slope terraces at the southern Argentine margin are part of a significant contourite depositional system composed of a variety of drifts, channels, and sediment waves. Here, a refined seismostratigraphic model for the sedimentary development of the Valentin Feilberg Terrace located in ~4.1 km water depth is presented. Analyzing multichannel seismic profiles across and along this terrace, significant changes in terrace morphology and seismic reflection character are identified and interpreted to reflect variations in deep water hydrography from Late Miocene to recent times, involving variable flow of Antarctic Bottom Water and Circumpolar Deep Water. A prominent basin-wide aggradational seismic unit is interpreted to represent the Mid-Miocene climatic optimum (~17–14 Ma). A major current reorganization can be inferred for the time ~14–12 Ma when the Valentin Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts. After ~12 Ma, bottom water flow remained vigorous at both margins of the terrace. Another intensification of bottom flow occurred at ~5–6 Ma when a mounded drift, moats, and sediment waves developed on the terrace. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway, and a subsequent stronger southward flow of North Atlantic Deep Water.


Middle Miocene North Atlantic Deep Water Seismic Unit Sediment Wave Mound Facies 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The paper benefitted from discussions with F.J. Hernández-Molina. Comments by P. Knutz, E. Llave, two anonymous reviewers, and the journal editors improved the manuscript. This research was funded by the Priority Program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution) of the Deutsche Forschungsgemeinschaft (DFG) under contract no. Ue 49/11. This is Alfred Wegener Institute publication awi-n19434.


  1. Arhan M, Heywood KJ, King BA (1999) The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep-Sea Res II 46:475–499CrossRefGoogle Scholar
  2. Arhan M, Carton X, Piola A, Zenk W (2002a) Deep lenses of circumpolar water in the Argentine Basin. J Geophys Res 107:C1. doi: 10.1029/2001JC000963 CrossRefGoogle Scholar
  3. Arhan M, Naveira Garabato AC, Heywood KJ, Stevens DP (2002b) The Antarctic circumpolar current between the Falkland Islands and South Georgia. J Phys Oceanogr 32:1914–1931CrossRefGoogle Scholar
  4. Billups K (2002) Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 185:287–307CrossRefGoogle Scholar
  5. Billups K, Schrag DP (2002) Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17:1003. doi: 10.1029/2000PA000567 CrossRefGoogle Scholar
  6. Bushnell DC, Baldi JE, Bettini FH, Franzin H, Kovaks E, Marinelli R, Wartenburg GJ (2000) Petroleum system analysis of the Eastern Colorado Basin, offshore Northern Argentine. In: Mello MR (ed) Petroleum systems of South Atlantic margins. AAPG Mem 73:403–415Google Scholar
  7. Carter L, Carter RM, McCave IN (2004) Evolution of the sedimentary system beneath the deep Pacific inflow off eastern New Zealand. Mar Geol 205:9–27CrossRefGoogle Scholar
  8. Carter L, McCave IN, Williams MJM (2008) Circulation and water masses of the Southern Ocean: a review. In: Florindo F, Siegert M (eds) Antarctic climate evolution. Elsevier, Amsterdam, pp 85–114CrossRefGoogle Scholar
  9. Ewing M, Ludwig WJ, Ewing JI (1964) Sediment distribution in the oceans: the Argentine Basin. J Geophys Res 69:2003–2032CrossRefGoogle Scholar
  10. Faugères J-C, Stow DAV, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38CrossRefGoogle Scholar
  11. Flower BP, Kennett JP (1994) The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555CrossRefGoogle Scholar
  12. Franke D, Neben S, Schreckenberger B, Schulze A, Stiller M, Krawczyk CM (2006) Crustal structure across the Colorado Basin, offshore Argentina. Geophys J Int 165:850–864CrossRefGoogle Scholar
  13. Franke D, Neben S, Ladage S, Schreckenberger B, Hinz K (2007) Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Mar Geol 244:46–67CrossRefGoogle Scholar
  14. Gordon AL (1975) An Antarctic oceanographic section along 170°E. Deep-Sea Res 22:357–374Google Scholar
  15. Gruetzner J, Uenzelmann-Neben G, Franke D (2010) Seismic images of contourites forming continental slope terraces at the Argentine Margin: implications for past changes in thermohaline circulation. Geo-Temas 11:59–60Google Scholar
  16. Haq BU, Hardenbol JAN, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  17. Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676CrossRefGoogle Scholar
  18. Hernández-Molina FJ, Paterlini M, Violante R, Marshall P, de Isasi M, Somoza L, Rebesco M (2009) Contourite depositional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507–510. doi: 10.1130/g25578a.1 CrossRefGoogle Scholar
  19. Hernández-Molina FJ, Paterlini M, Somoza L, Violante R, Arecco MA, de Isasi M, Rebesco M, Uenzelmann-Neben G, Neben S, Marshall P (2010) Giant mounded drifts in the Argentine continental margin: origins, and global implications for the history of thermohaline circulation. Mar Petrol Geol 27:1508–1530CrossRefGoogle Scholar
  20. Hinz K, Neben S, Schreckenberger B, Roeser HA, Block M, Souza KG, Meyer H (1999) The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Mar Petrol Geol 16:1–25CrossRefGoogle Scholar
  21. Hogg NG, Siedler G, Zenk W (1999) Circulation and variability at the southern boundary of the Brazil Basin. J Phys Oceanogr 29:145–157CrossRefGoogle Scholar
  22. Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:483–487CrossRefGoogle Scholar
  23. Holbourn A, Kuhnt W, Schulz M, Flores J-A, Andersen N (2007) Orbitally-paced climate evolution during the middle Miocene "Monterey" carbon-isotope excursion. Earth Planet Sci Lett 261:534–550CrossRefGoogle Scholar
  24. Houtz RE (1977) Sound-velocity characteristics of sediment from the eastern South American margin. Geol Soc Am Bull 88:720–722CrossRefGoogle Scholar
  25. John CM, Karner GD, Mutti M (2004) δ18O and Marion Plateau backstripping: combining two approaches to constrain late middle Miocene eustatic amplitude. Geology 32:829–832CrossRefGoogle Scholar
  26. Joseph LH, Rea DK, van der Pluijm BA (2004) Neogene history of the Deep Western Boundary Current at Rekohu sediment drift, Southwest Pacific (ODP Site 1124). Mar Geol 205:185–206CrossRefGoogle Scholar
  27. Kennett JP (1982) Marine geology. Prentice Hall, Englewood CliffsGoogle Scholar
  28. Klaus A, Ledbetter MT (1988) Deep-sea sedimentary processes in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms). Deep-Sea Res 35:899–917CrossRefGoogle Scholar
  29. Krastel S, Wefer G, Hanebuth TJJ, Antobreh AA, Freudenthal T, Preu B, Schwenk T, Strasser M, Violante R, Winkelmann D (2011) Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo-Mar Lett (in press). doi: 10.1007/s00367-011-0232-4
  30. Lonardi AG, Ewing M (1971) Sediment transport and distribution in the Argentine Basin. 4. Bathymetry of the continental margin, Argentine Basin and other related provinces. Canyons and sources of sediments. Phys Chem Earth 8:79–121CrossRefGoogle Scholar
  31. Lorenzo JM, Wessel P (1997) Flexure across a continent–ocean fracture zone: the northern Falkland/Malvinas Plateau, South Atlantic. Geo-Mar Lett 17(1):110–118. doi: 10.1007/s003670050015 CrossRefGoogle Scholar
  32. Macdonald D, Gomez-Perez I, Franzese J, Spalletti L, Lawver L, Gahagan L, Dalziel I, Thomas C, Trewin N, Hole M, Paton D (2003) Mesozoic break-up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Mar Petrol Geol 20:287–308CrossRefGoogle Scholar
  33. Maldonado A, Barnolas A, Bohoyo F, Escutia C, Galindo-Zaldívar J, Hernández-Molina J, Jabaloy A, Lobo FJ, Nelson CH, Rodríguez-Fernández J, Somoza L, Vázquez J-T (2005) Miocene to Recent contourite drifts development in the northern Weddell Sea (Antarctica). Global Planet Change 45:99–129CrossRefGoogle Scholar
  34. Maldonado A, Bohoyo F, Galindo-Zaldívar J, Hernández-Molina J, Jabaloy A, Lobo F, Rodríguez-Fernández J, Suriñach E, Vázquez J (2006) Ocean basins near the Scotia–Antarctic plate boundary: influence of tectonics and paleoceanography on the Cenozoic deposits. Mar Geophys Res 27:83–107CrossRefGoogle Scholar
  35. Neben S, Schreckenberger B (2005) Research cruise BGR04: geophysical investigations offshore Argentine and Uruguay ARGURU. In: Cruise report BGR. Federal Institute for Geosciences and Natural Resources, Hannover, p 99Google Scholar
  36. Nisancioglu KH, Raymo ME, Stone PH (2003) Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography 18:1006. doi: 10.1029/2002PA000767 CrossRefGoogle Scholar
  37. Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55–109CrossRefGoogle Scholar
  38. Piola AR, Rivas A (1997) Corrientes en la plataforma continental. In: Boschi EE (ed) Antecedentes históricos de las exploraciones en el mar y las características ambientales. El Mar Argentino y sus recursos pesqueros, Tomo 1. Instituto Nacional de Investigación y Desarrollo Pesquero, Secretaría de Agricultura, Ganadería, Pesca y Alimentación, Mar del Plata, pp 119–132Google Scholar
  39. Rebesco M, Camerlenghi A (eds) (2008) Contourites. Elsevier, AmsterdamGoogle Scholar
  40. Reid JL (1989) On the total geostrophic circulation of the South Atlantic Ocean: flow patterns, tracers, and transports. Prog Oceanogr 23:149–244CrossRefGoogle Scholar
  41. Ryan WBF, Bolli HM, Foss GN, Natland JH, Hottman WE, Foresman JB (1978) Objectives, principal results, operations, and explanatory notes of Leg 40, South Atlantic. In: Bolli HM, Ryan WBF, McKnight BK, Kagami H, Melguen M, Siesser WG, Longoria JF, Decima FP, Foresman JB, Hottman WE, Natland JH (eds) Initial reports of the deep sea drilling project 40. US Government Printing Office, Washington, pp 5–28Google Scholar
  42. Schlitzer R (2010) Ocean Data View.
  43. Shanmugam G (2006) Deep-water processes and facies models. Elsevier, AmsterdamGoogle Scholar
  44. Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770CrossRefGoogle Scholar
  45. Shevenell AE, Kennett JP, Lea DW (2008) Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem Geophys Geosyst 9:Q02006. doi: 10.1029/2007GC001736 CrossRefGoogle Scholar
  46. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962CrossRefGoogle Scholar
  47. Speer K, Zenk W, Siedler G, Pätzold J, Heidland C (1992) First resolution of flow through the Hunter Channel in the South Atlantic. Earth Planet Sci Lett 113:287–292CrossRefGoogle Scholar
  48. Stow DAV, Faugères J-C, Howe JA, Pudsey CJ, Viana AR (2002) Bottom currents, contourites and deep-sea sediment drifts; current state-of-the-art. In: Stow DAV, Pudsey CJ, Howe JA, Faugères J-C, Viana AR (eds) Deep-water contourite systems; modern drifts and ancient series, seismic and sedimentary characteristics. Geol Soc Lond Mem 22:7–20Google Scholar
  49. Tankard AJ, Uliana MA, Welsink HJ, Ramos VA, Turic M, Franca AB, Milani EJ, de Brito Neves BB, Eyles N, Skarmeta J, Santa Ana H, Wiens F, Cirbian M, Lopez O, Germs GJB, De Wit MJ, Machacha T, Miller RM (1995) Structural and tectonic controls of basin evolution in southwestern Gondwana during the Phanerozoic. In: Tankard AJ, Suarez Soruco R, Welsink HJ (eds) Petroleum basins of South America. AAPG, Tulsa, pp 5–52Google Scholar
  50. Thomson K (1998) When did the Falklands rotate? Mar Petrol Geol 15:723–736CrossRefGoogle Scholar
  51. Van Andel TH, Thiede J, Sclater JG, Hay WW (1977) Depositional history of the South Atlantic during the last 125 million years. J Geol 85:651–698CrossRefGoogle Scholar
  52. Wan S, Kürschner WM, Clift PD, Li A, Li T (2009) Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophys Res Lett 36:L19706. doi: 10.1029/2009GL040279 CrossRefGoogle Scholar
  53. Wright JD, Miller KG (1996) Control of North Atlantic Deep Water circulation by the Greenland-Scotland Ridge. Paleoceanography 11:157–170CrossRefGoogle Scholar
  54. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jens Gruetzner
    • 1
    Email author
  • Gabriele Uenzelmann-Neben
    • 1
  • Dieter Franke
    • 2
  1. 1.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany
  2. 2.Bundesanstalt für Geowissenschaften und RohstoffeHannoverGermany

Personalised recommendations