Geo-Marine Letters

, Volume 31, Issue 5–6, pp 495–507 | Cite as

Middle slope contourite deposits and associated sedimentary facies off NE Argentina

  • Graziella Bozzano
  • Roberto A. Violante
  • Maria Elena Cerredo


The Argentine continental margin is characterised by a large contourite depositional system driven by southern-sourced water masses flowing at different water depths. Interest in contourite deposits is increasing in geoscience and related fields, though knowledge of the Argentine contourite system is still limited. In particular, studies based on core data providing detailed descriptions of sedimentary facies are lacking, as are investigations of principal sediment source areas and of key factors controlling sedimentary processes. This study combines visual core description and downcore grain-size analyses as well as petrographic thin-section and magnetic susceptibility analyses of 14 cores from intermediate water depths of 616–1,208 m to characterise contourite deposits on the north-eastern Argentinean slope. Gravel-rich, sandy–silty and muddy contourites as well as hemipelagic facies were identified. The deposition of these contourites was presumably controlled by sea level, the depth range of the Antarctic water mass, climate conditions and windborne terrigenous supply. It is proposed that, during glacial lowstands, muddy contourites were deposited at depths <900 m, whereas sandy–silty sequences dominated at deeper depths. During the late Pleistocene–Holocene transition, sandy–silty contourites covered the entire middle slope. Hemipelagic facies draped limited sectors of the middle slope when the sea level reached the present-day position and gravel-rich contourites became restricted to contouritic channels and moats. Northern Patagonia and the southern Pampa are the most plausible sources for sediments deposited via along-slope processes, whereas the Tandilia Range is the best candidate for sediments deposited via down-slope processes.


Last Glacial Maximum Sedimentary Facies Lithic Fragment North Atlantic Deep Water Middle Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Argentine National Agency ANPCyT research projects PICT2003-14417 and PICT2010-0953. Magnetic susceptibility analyses on LBIV cores were performed by M.J. Orgeira and Scleractinia identification by R. Garberoglio (Geological Science Department, Buenos Aires University). This manuscript benefits from discussion with J.L. Cavallotto and assistance from S. Marcolini, H. Martinez and A. de León. Two anonymous reviewers, A. Voelker (guest editor) and the journal editors are acknowledged for insightful comments that contributed to improve the quality of the manuscript.


  1. Basile I, Grousset FE, Revel M, Petit JR, Biscaye PE, Barkov N (1997) Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet Sci Lett 46:573–589CrossRefGoogle Scholar
  2. Berggren WA, Hilgen FJ, Langereis CG, Kent DV, Obradovich JD, Raffi I, Raymo ME, Shackleton NJ (1995) Late Neogene chronology: new perspectives in high-resolution stratigraphy. Geol Soc Am Bull 107(11):1272–1287CrossRefGoogle Scholar
  3. Blasi A, Manassero MJ (1990) The Colorado River of Argentina: source, climate, and transport as controlling factors on sand composition. J S Am Earth Sci 3:65–70CrossRefGoogle Scholar
  4. Bleil U, Alin A, Bickert T, Böke W, Breitzke M, Drachenberg S, Eades E, Frederichs T, Frenz M, Heuer V, Hilgenfeldt C, Hopfauf V, de León A, von Lom-Keil H, Michels K, Pfeifer K, Rosiak U, Rühlemann C, Segl M, Spieß V, Violante RA, Watanabe S, Westerhold T, Zatloucal N (2001) Report and preliminary results of Meteor Cruise 46/3, Montevideo-Mar del Plata, 4/01/2000-7/02/2000. Ber Fachber Geowiss Univ Bremen 172Google Scholar
  5. Bloemendal J (1980) Paleoenvironmental implications of the magnetic characteristics of sediments from deep sea drilling project Site 514, Southeast Argentine Basin. In: Ludwig WJ, Krasheninnikov VA et al (eds) Init Repts DSDP 71. US Government Printing Office, Washington, DC, pp 1097–1108Google Scholar
  6. Boltovskoy E (1973) Estudio de testigos submarinos del Atlántico sudoccidental. Rev Museo Arg Ciencia Nat Bernardino Rivadavia VII(4):215–340Google Scholar
  7. Cairns SD (2009) Online appendix. Phylogenetic list of the 711 valid Recent azooxanthellate scleractinian species with their junior synonyms and depth ranges. In: Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge,
  8. Carter L, Lewis K (1995) Variability of the modern sand cover on a tide and storm driven inner shelf, south Wellington, New Zealand. N Z J Geol Geophys 38(4):451–470CrossRefGoogle Scholar
  9. Cavallotto JL, Violante RA (2005) Geología y geomorfología del Río de la Plata. In: de Barrio RE, Etcheverry RO, Caballé MF, Llambias E (eds) Geología y Recursos Minerales de la Provincia de Buenos Aires. XVI Congreso Geológico Argentino, La Plata, pp 237–254Google Scholar
  10. Curry WB, Oppo DE (2005) Glacial water mass geometry and the distribution of δ13C of ΣCO2, in the western Atlantic Ocean. Paleoceanography 20:PA1017. doi: 10.1029/PA003i003p00317 CrossRefGoogle Scholar
  11. Dalla Salda L, Spalletti LA, Poiré D, de Barrio R, Echeveste H, Benialgo A (2006) Tandilia. In: Aceñolaza FG (ed) Temas de la Geología Argentina I, Serie Correlación Geológica 21. INSUGEO, Tucumán, pp 17–46Google Scholar
  12. Dearing J (1994) Environmental magnetic susceptibility using the Bartington MS2 system. Chi, LincolnGoogle Scholar
  13. Delmonte B, Basile-Doelsch I, Petit JR, Maggi V, Revel M, Michard A, Jagoutz E, Grousset F (2004) Comparing the Epica and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods. Earth-Sci Rev 66:63–87CrossRefGoogle Scholar
  14. Diekmann B, Kuhn G, Rachold V, Abelmann A, Brathauer U, Fütterer DK, Gersonde R, Grobe H (2000) Terrigenous sediment supply in the Scotia Sea (Southern Ocean): response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 162(3/4):357–387CrossRefGoogle Scholar
  15. Etchichury MC, Remiro JR (1960) Muestras de fondo de la plataforma continental comprendida entre los paralelos 34° y 36°30 de latitud sur y los meridianos 53°10 y 56°30 de longitud oeste. Rev Museo Arg Ciencia Nat Bernardino Rivadavia VI(4):1–70Google Scholar
  16. Frenz M, Höppner R, Stuut J-BW, Wagner T, Henrich R (2003) Surface sediment bulk geochemistry and grain-size composition related to the oceanic circulation along the South American continental margin in the Southwest Atlantic. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer, Berlin, pp 347–373Google Scholar
  17. Gaiero DM, Probst JL, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623CrossRefGoogle Scholar
  18. Gaiero DM, Depetris PJ, Probst J-L, Bidart SM, Leleyter L (2004) The signature of river- and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for palaeoclimatic interpretations. Earth Planet Sci Lett 219:357–376CrossRefGoogle Scholar
  19. Gilberto DA, Bermec CS, Acha EM, Mianzan H (2004) Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rio de la Plata estuary and adjacent shelf waters. Estuarine Coastal Shelf Sci 61:1–13CrossRefGoogle Scholar
  20. Grousset FE, Biscaye P, Revel M, Petit JR, Pye K, Joussaume S, Jouzel J (1992) Antarctic (Dome C) ice-core dust at 18 ky BP: isotopic constraints on origins. Earth Planet Sci Lett 111:175–182CrossRefGoogle Scholar
  21. Guilderson TP, Burckle L, Hemming S, Peltier WR (2000) Late Pleistocene sea level variations derived from the Argentine Shelf. Geochem Geophys Geosyst 1:1055. doi: 10.1029/2000GC000098 CrossRefGoogle Scholar
  22. Harris P, Tsuji Y, Marshall JF, Davies PJ, Honda N, Matsuda H (1996) Sand and rhodolith-gravel entrainment on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. Mar Geol 129:313–330CrossRefGoogle Scholar
  23. Hernández-Molina FJ, Paterlini MC, Violante RA, Marshall P, Somoza L, Rebesco M (2009) A contourite depositional system in the Argentine slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507–510CrossRefGoogle Scholar
  24. Hernández-Molina FJ, Paterlini MC, Somoza L, Violante RA, Arecco MA, de Isasi M, Rebesco M, Uenzelmann-Neben G, Neben S, Marshall P (2010) Giant mounded drifts in the Argentine Continental Margin: origins and global implications for the history of thermohaline circulation. Mar Petrol Geol 27:1508–1530CrossRefGoogle Scholar
  25. Huret M, Dadou I, Dumas F (2005) Coupling physical and biogeochemical processes in the Rio de la Plata plume. Cont Shelf Res 25:629–653CrossRefGoogle Scholar
  26. Iñiguez RAM (1999) La cobertura sedimentaria de Tandilia. In: Camino R (ed) Geología Argentina, Anales 29. SEGEMAR, Buenos Aires, pp 101–106Google Scholar
  27. Kaiser J, Lamy F (2010) Links between Patagonian ice sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4–2). Quat Sci Rev 29:1464–1471CrossRefGoogle Scholar
  28. Kemp RA, Zárate M, Toms P, King M, Sanabria J, Arguello G (2006) Late Quaternary paleosols, stratigraphy and landscape evolution in the Northern Pampa, Argentina. Quat Res 66:119–132CrossRefGoogle Scholar
  29. Kilmurray JO (1975) Las Sierras Australes de la provincia de Buenos Aires: las fases de deformación y nueva interpretación estratigráfica. RAGA XXX:331–343Google Scholar
  30. Kissel C, Laj C, Labeyrie L, Dokken T, Voelker A, Blamart D (1999) Rapid climatic variations during marine isotopic stage 3: magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth Planet Sci Lett 171(3):489–502CrossRefGoogle Scholar
  31. Krastel S, Wefer G, Hanebuth TJJ, Antobreh AA, Freudenthal T, Preu B, Schwenk T, Strasser M, Violante R, Winkelmann D, M78/3 shipboard scientific party (2011) Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo-Mar Lett (in press). doi: 10.1007/s00367-011-0232-4
  32. Lunt DJ, Valdes PJ (2001) Dust transport to Dome C, Antarctica at the last glacial maximum and present day. Geophys Res Lett 28(2):295–298CrossRefGoogle Scholar
  33. Lunt DJ, Valdes PJ (2002) Dust deposition and provenance at the Last Glacial Maximum and present day. Geophys Res Lett 29:2085. doi: 10.1029/2002GL015656 CrossRefGoogle Scholar
  34. Mahiques MMM, Tassinari CCG, Marcolini S, Violante RA, Figueira RCL, Silveira ICA, Burone L, Sousa SHM (2008) Nd and Pb isotope signatures on the Southeastern South American upper margin: implications for sediment transport and source rocks. Mar Geol 250:51–63CrossRefGoogle Scholar
  35. Mahowald N, Kohfeld K, Hansson M, Balkanski Y, Harrison SP, Prentice CI, Schulz M, Rodhe H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104(D13):15,895–15,916. doi: 10.1029/1999JD900084 CrossRefGoogle Scholar
  36. Makou MC, Oppo DW, Curry WB (2010) South Atlantic intermediate water mass geometry for the last glacial maximum from foraminiferal Cd/Ca. Paleoceanography 25:PA4101. doi: 10.1029/2010PA001962 CrossRefGoogle Scholar
  37. McCave IN (2008) Size sorting during transport and deposition of fine sediments: sortable silt and flow speed. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in Sedimentology, vol 60. Elsevier, Amsterdam, pp 121–142Google Scholar
  38. Mollenhauer G, McManus JF, Benthien A, Müller PJ, Eglinton TI (2006) Rapid lateral particle transport in the Argentine Basin: molecular 14C and 230Thxs evidence. Deep-Sea Res I 53:1224–1243CrossRefGoogle Scholar
  39. Moseley HN (1881) Report on certain hydroid, alcyonarian, and madreporarian corals procured during the voyage of HMS Challenger, in the years 1873–1876, Part III. On deep-sea Madreporaria. In: Thomson CW, Murray J (eds) Report of the scientific results of the voyage of HMS Challenger during the years 1873–76. Zoology 2:127–208Google Scholar
  40. Oppo DW, Horowitz M (2000) Glacial deep water geometry: South Atlantic benthic foraminiferal Cd/Ca and δ13C evidence. Paleoceanography 15(2):147–160. doi: 10.1029/1999PA000436 CrossRefGoogle Scholar
  41. Parker G, Marcolini S (1992) Geomorfología del Delta del Paraná y su extensión hacia el Río de la Plata. AAS Revista 47(2):243–249Google Scholar
  42. Parker G, Marcolini S, Cavallotto JL, Violante RA (1987) Modelo esquemático de dispersión de sedimentos en el Río de la Plata. Cien Tecnol Agua 1(4):68–80Google Scholar
  43. Parker G, Violante RA, Paterlini MC (1996) Fisiografía de la plataforma continental. In: Ramos VA, Turic MA (eds) Geología y Recursos Naturales de la Plataforma Continental Argentina, XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Asociación Geológica Argentina-Instituto Argentino del Petróleo, Buenos Aires, Relatorio 1:1–16Google Scholar
  44. Parker G, Violante RA, Paterlini MC, Costa IP, Marcolini S, Cavallotto JL (2008) Las secuencias depositacionales del Plioceno-Cuaternario en la plataforma submarina adyacente al litoral del este Bonaerense. Lat Am J Sedimentol Basin Anal 15(2):105–124Google Scholar
  45. Peterson RG (1992) The boundary currents in the western Argentine Basin. Deep-Sea Res 39(3/4):623–644CrossRefGoogle Scholar
  46. Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73CrossRefGoogle Scholar
  47. Pierce JW, Siegel FR (1979) Suspended particulate matter on the southern Argentina shelf. Mar Geol 29:73–91CrossRefGoogle Scholar
  48. Piola AR, Gordon AL (1989) Intermediate waters in the western South Atlantic. Deep-Sea Res 36(1):1–16CrossRefGoogle Scholar
  49. Piola AR, Matano RP (2001) Brazil and Falklands (Malvinas) currents. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences, vol. 1. Academic, London, pp 340–349CrossRefGoogle Scholar
  50. Piola AR, Matano RP, Palma ED, Möller OO Jr, Campos EJD (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:L01603. doi: 10.1029/2004GL021638 CrossRefGoogle Scholar
  51. Piola AR, Romero SI, Zajaczkovski U (2008) Space–time variability of the Plata plume inferred from ocean color. Cont Shelf Res 28(13):1556–1567CrossRefGoogle Scholar
  52. Piola AR, Martínez Avellaneda N, Guerrero RA, Jardón FP, Palma ED, Romero SI (2010) Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci 6:345–359CrossRefGoogle Scholar
  53. Piovano EL, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and Patagonia, Argentina) during the last 13.0 Ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Developments in Paleoenvironmental Research, vol 14, part 3. Springer, Berlin, pp 323–351. doi: 10.1007/978-90-481-2672-9_14 CrossRefGoogle Scholar
  54. Potter PE (1984) South American modern beach sand and plate tectonics. Nature 311:645–648CrossRefGoogle Scholar
  55. Prieto AR (1996) Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quat Res 45:73–88CrossRefGoogle Scholar
  56. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. doi: 10.1029/2000RG000095 CrossRefGoogle Scholar
  57. Quattrocchio ME, Borromei AM, Deschamps CM, Grill SC, Zavala CA (2008) Landscape evolution and climate changes in the Late Pleistocene–Holocene, southern Pampa (Argentina): evidence from palynology, mammals and sedimentology. Quat Int 181:123–138CrossRefGoogle Scholar
  58. Ramos VA, Niemeyer H, Skarmeta J, Muñoz J (1982) Magmatic evolution of the austral Patagonian Andes. Earth-Sci Rev 18:411–443CrossRefGoogle Scholar
  59. Rapela CW, Spalletti LA, Merodio JC, Aragón E (1988) Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40°S-42°30′S). J S Am Earth Sci 1:75–88CrossRefGoogle Scholar
  60. Rebesco M, Camerlenghi A (eds) (2008) Contourites. Developments in sedimentology, vol 60. Elsevier, AmsterdamGoogle Scholar
  61. Robinson SG (1990) Applications for whole-core susceptibility measurements of deep-sea sediments: ODP Leg 115 results. In: Duncan RA, Backman J, Peterson LC et al. (eds) Proc ODP Sci Res 115:737–771Google Scholar
  62. Robinson SG, Maslin MA, McCave IN (1995) Magnetic susceptibility variations in Upper Pleistocene deep-sea sediments of the NE Atlantic: implications for ice rafting and paleocirculation at the Last Glacial Maximum. Paleoceanography 10(2):221–250. doi: 10.1029/94PA02683 CrossRefGoogle Scholar
  63. Segl M, cruise participants (1994) Report and preliminary results of Meteor-cruise M29/1. Ber Fachber Geowiss Univ Bremen 58Google Scholar
  64. Sellés-Martinez J (1989) The structure of Sierras Australes (Buenos Aires-Argentina): an example of folding in a transpressive environment. J S Am Earth Sci 2:317–329CrossRefGoogle Scholar
  65. Smith J, Vance D, Kemp RA, Archer C, Toms P, King M, Zárate M (2003) Isotopic constraints on the source of Argentinian loess – with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth Planet Sci Lett 212:181–196CrossRefGoogle Scholar
  66. Spalletti LA, Isla FI (2003) Características y evolución del delta del Río Colorado (Colú-Leuvú), Provincia de Buenos Aires, República Argentina. AAS Revista 10(10):23–37Google Scholar
  67. Spieß V, Albrecht N, Bickert T, Breitzke M, Brüning M, Dreyzehner A, Groß U, Krüger D, von Lom-Keil H, Möller HJ, Nimrich M, Ochsenhirt WT, Rudolf T, Seiter C, Truscheit T, Violante R, Westerhold T (2002) ODP Südatlantik 2001 Part 2, Cruise No. 49, Leg 2, 13 February–7 March 2001, Montevideo–Montevideo. Ber Fachber Geowiss Univ BremenGoogle Scholar
  68. Stow DAV, Faugères J-C, Howe JA, Pudsey CJ, Viana AR (2002) Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art. In: Stow DAV, Faugères J-C, Howe JA, Pudsey CJ, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geol Soc Lond Mem 22:7–20Google Scholar
  69. Stow DAV, Hunter S, Wilkinson D, Hernández-Molina FJ (2008) The nature of contourite deposition. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in Sedimentology, vol 60. Elsevier, Amsterdam, pp 143–156Google Scholar
  70. Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res 104(9):20,863–20,883CrossRefGoogle Scholar
  71. Sylvestre F (2009) Moisture pattern during the Last Glacial Maximum in South America. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Developments in Paleoenvironmental Research, vol 14, part 1. Springer, Berlin, pp 3–27. doi: 10.1007/978-90-481-2672-9_1 CrossRefGoogle Scholar
  72. Talley LD (1996) Antarctic Intermediate Water in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and past circulation. Springer, Berlin, pp 219–238Google Scholar
  73. Teruggi ME (1954) El material volcánico-piroclástico en la sedimentación pampeana. AAS Revista 9:184–191Google Scholar
  74. Teruggi ME (1957) The nature and origin of Argentine loess. J Sediment Petrol 27:322–332Google Scholar
  75. Teruggi ME, Kilmurray JO (1980) Sierras Septentrionales de la Provincia de Buenos Aires. In: Turner J (ed) Geología Regional Argentina 2. Academia Nacional de Ciencias, Córdoba, pp 919–956Google Scholar
  76. Tsuchiya M, Talley LD, McCartney MS (1994) Water-mass distributions in the western South Atlantic; a section from South Georgia Island (54°S) northward across the equator. J Mar Res 52:55–81CrossRefGoogle Scholar
  77. Urien CM (1972) Rio de la Plata Estuary environments. Geol Soc Am Mem 133:213–234Google Scholar
  78. Urien CM, Ewing M (1974) Recent sediments and environment of southern Brazil, Uruguay, Buenos Aires and Rio Negro continental shelf. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, Berlin Heidelberg New York, pp 157–177Google Scholar
  79. Violante RA, Paterlini CM, Costa P, Hernández-Molina FJ, Segovia L, Cavallotto JL, Marcolini S, Bozzano G, Laprida C, García Chapori N, Bickert T, Spieß V (2010) Sismoestratigrafía y evolución geomorfológica del talud continental adyacente al litoral del este bonaerense. Lat Am J Sedimentol Basin Anal 17(1):33–62Google Scholar
  80. von Dobeneck T, Bleil U (2004) Susceptibility of sediment core GeoB2703-5. doi: 10.1594/PANGAEA.188784
  81. Xavier AG, Marfinez MB, Lima JAM (1993) Analise preliminar de dados de corrente de fundo na Bacia de Campos. Petrobras/Cenpes/Diprex, Rio de Janeiro, Internal Rep Sepron 016/93Google Scholar
  82. Zárate M (2003) Loess of southern South America. Quat Sci Rev 22:1987–2006CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Graziella Bozzano
    • 1
  • Roberto A. Violante
    • 1
  • Maria Elena Cerredo
    • 2
  1. 1.Sección Geología MarinaServicio de Hidrografía NavalBuenos AiresArgentina
  2. 2.Departamento Cs GeológicasFCEyN, Universidad de Buenos AiresCiudad UniversitariaArgentina

Personalised recommendations