Geo-Marine Letters

, Volume 31, Issue 4, pp 271–283 | Cite as

Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay)

  • Sebastian KrastelEmail author
  • Gerold Wefer
  • Till J. J. Hanebuth
  • Andrew A. Antobreh
  • Tim Freudenthal
  • Benedict Preu
  • Tilmann Schwenk
  • Michael Strasser
  • Roberto Violante
  • Daniel Winkelmann
  • M78/3 shipboard scientific party


The continental margin off Uruguay and northern Argentina is characterized by high fluvial input by the de la Plata River and a complex oceanographic regime. Here we present first results from RV Meteor Cruise M78/3 of May–July 2009, which overall aimed at investigating sediment transport processes from the coast to the deep sea by means of hydroacoustic and seismic mapping, as well as coring using conventional tools and the new MARUM seafloor drill rig (MeBo). Various mechanisms of sediment instabilities were identified based on geophysical and core data, documenting particularly the continental slope offshore Uruguay to be locus of submarine landsliding. Individual landslides are relatively small with volumes <2km3. Gravitational downslope sediment transport also occurs through the prominent Mar del Plata Canyon and several smaller canyons. The canyons originate at a midslope position, and the absence of buried upslope continuations strongly suggests upslope erosion as main process for canyon evolution. Many other morphological features (e.g., slope-parallel scarps with scour geometries) and abundant contourites in a 35-m-long MeBo core reveal that sediment transport and erosion are controlled predominantly by strong contour currents. Despite numerous landslide events, their geohazard potential is considered to be relatively small, because of their small volumes and their occurrence at relatively deep water depths of more than 1,500 m.


Continental Margin Slope Failure Tsunami Wave Excess Pore Pressure Submarine Landslide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the scientists and crew of Meteor Cruise M78/3 for their help in collecting the data. The paper was greatly strengthened by reviews from Aggeliki Georgiopoulou, Frank Strozyk, and the journal editors. Our research was funded by grants of the Deutsche Forschungsgemeinschaft in the frame of the Excellence Cluster “The Future Ocean” and the DFG-Research Center/Excellence Cluster “The Ocean in the Earth System”.


  1. Antobreh AA, Krastel S (2006) Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: a newly discovered canyon preserved off a major arid climatic region. Mar Petrol Geol 23:37–59CrossRefGoogle Scholar
  2. Antoine D, André JM, Morel A (1996) Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob Biogeochem Cycles 10:43–55CrossRefGoogle Scholar
  3. Babonneau N, Savoye B, Cremer M, Klein B (2002) Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Mar Petrol Geol 19:445–467CrossRefGoogle Scholar
  4. Canals M, De Mol B (2009) Results from the European deep ocean margins research training network. Int J Earth Sci 98:715–720CrossRefGoogle Scholar
  5. Damuth JE (1994) Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Mar Petrol Geol 11:320–346CrossRefGoogle Scholar
  6. Damuth JE, Kumar N (1975) Amazon cone: morphology, sediments, age and growth pattern. Geol Soc Am Bull 86:873–878CrossRefGoogle Scholar
  7. de Santa Ana H, Ucha N, Gutiérrez L, Veroslavsky G (2004) Gas hydrates estimation on the gas potential from reflection seismic data in the continental shelf of Uruguay. Revista SUG 11:46–52Google Scholar
  8. Farre JA, McGregor BA, Ryan WBF, Robb JM (1983) Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution. In: Stanley DJ, Moore GT (eds) The shelfbreak. Critical interface on continental margins. SEPM Spec Publ 33:25–39Google Scholar
  9. Faugères JC, Stow DAV, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38CrossRefGoogle Scholar
  10. Flood RD, Shor AN (1988) Mud waves in the Argentine Basin and their relationship to regional bottom circulation patterns. Deep-Sea Res 35:943–971CrossRefGoogle Scholar
  11. Franke D, Neben S, Schreckenberger B, Schulze A, Stiller M, Krawczyk CM (2006) Crustal structure across the Colorado Basin, offshore Argentina. Geophys J Int 165:850–864CrossRefGoogle Scholar
  12. Freudenthal T, Wefer G (2007) Scientific drilling with the sea floor drill rig MeBo. Sci Drill 5:63–66Google Scholar
  13. Freudenthal T, Wefer G (2009) Shallow drilling in the deep sea: the sea floor drill rig MEBO. In: Proc IEEE OCEANS Conf, OCEANS 2009 EUROPE, 11–14 May 2009, Bremen, Germany, pp 180–183. doi: 10.1109/OCEANSE.2009.5278133
  14. Gilberto DA, Bermec CS, Acha EM, Mianzan H (2004) Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rio de la Plata estuary and adjacent shelf waters. Estuar Coast Shelf Sci 61:1–13CrossRefGoogle Scholar
  15. Green AN, Goff JA, Uken R (2007) Geomorphological evidence for upslope canyon-forming processes on the northern KwaZulu-Natal shelf, SW Indian Ocean, South Africa. Geo-Mar Lett 27(6):399–409. doi: 10.1007/s00367-007-0082-2 CrossRefGoogle Scholar
  16. Greene HG, Ward SN (2003) Mass movement features along the central California margin and their modeled consequences for tsunami generation. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards Research, vol 9. Kluwer, Dordrecht, pp 343–356CrossRefGoogle Scholar
  17. Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE, Eichhubl P (2006) Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat Hazards Earth Syst Sci 6:63–88CrossRefGoogle Scholar
  18. Harbitz CB, Løvholt F, Pedersen G, Masson D (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:255–264Google Scholar
  19. Heezen BC, Hollister CD, Ruddiman WF (1966) Shaping of the continental rise by deep geostrophic bottom currents. Science 152:502–508CrossRefGoogle Scholar
  20. Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N, Schulz HD, Boetius A (2003) Control of sulphate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for burial of sulfur in marine sediments. Geochim Cosmochim Acta 67(14):2631–2647CrossRefGoogle Scholar
  21. Hernández-Molina FJ, Paterlini M, Violante R, Marshall P, de Isasi M, Somoza L, Rebesco M (2009) Contourite depositional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507–510CrossRefGoogle Scholar
  22. Hinz K, Neben S, Schreckenberger B, Roeser HA, Block M, Goncalves de Souza K, Meyer H (1999) The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Mar Petrol Geol 16:1–25CrossRefGoogle Scholar
  23. Klaus A, Ledbetter MT (1988) Deep-sea sedimentary processes in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms). Deep-Sea Res 35:899–917CrossRefGoogle Scholar
  24. Krastel S, Schmincke H-U, Jacobs CL (2001) Formation of submarine canyons on the flanks of ocean islands: examples from the Canary Islands. Geo-Mar Lett 20:160–167. doi: 10.1007/s003670000049 CrossRefGoogle Scholar
  25. Laberg JS, Camerlenghi A (2008) The significance of contourites for submarine slope stability. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, vol 60. Elsevier, Amsterdam, pp 537–556Google Scholar
  26. Lonardi AG, Ewing M (1971) Sediment transport and distribution in the Argentine Basin. 4. Bathymetry of the continental margin. Argentine Basin and other related provinces. Canyons and sources of sediments. In: Physics and chemistry of the earth, vol 8. Pergamon Press, Oxford, pp 79–121Google Scholar
  27. Lykousis V, Sakellariou D, Locat J (eds) (2007) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 27. Springer, DordrechtGoogle Scholar
  28. Maldonado A, Barnolas A, Bohoyo F, Escuita C, Galindo-Zaldívar J, Hernández-Molina J, Jabaloy A, Lobo FJ, Nelson CH, Rodríguez-Fernández J, Somoza L, Vázquez J-T (2005) Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Glob Planet Change 45:99–129CrossRefGoogle Scholar
  29. Max MD, Ghidella M, Kovacs L, Paterlini M, Valladares JA (1999) Geology of the Argentine continental shelf and margin from aeromagnetic survey. Mar Petrol Geol 16:41–64CrossRefGoogle Scholar
  30. McCave IN (2002) Sedimentary settings on continental margins – an overview. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems. Springer, Berlin Heidelberg, pp 1–14Google Scholar
  31. McHugh CMG, Ryan WBF, Eittreim S, Reed D (1998) The influence of San Gregorio fault on the morphology of Monterey Canyon. Mar Geol 146:63–91CrossRefGoogle Scholar
  32. Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) (2010) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, DordrechtGoogle Scholar
  33. Olson DB, Podesta GP, Evans RH, Brown OB (1988) Temporal variations in the separation of Brazil and Malvinas Currents. Deep-Sea Res 35:1971–1990CrossRefGoogle Scholar
  34. Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73CrossRefGoogle Scholar
  35. Peterson RG, Johnson CS, Krauss W, Davis RE (1996) Lagrangian measurements in the Malvinas Current. In: Wefer G, Berger W, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin Heidelberg, pp 239–247Google Scholar
  36. Piola AR, Romero SI (2004) Analysis of space-time variability of the Plata River plume. Gayana (Concepción) 68(2):482–486CrossRefGoogle Scholar
  37. Piola AR, Matano RP, Palma ED, Möller OO, Campos EJD (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:L01603. doi: 10.1029/2004GL021638 CrossRefGoogle Scholar
  38. Pratson LF, Coakley BJ (1996) A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows. Geol Soc Am Bull 108:225–234CrossRefGoogle Scholar
  39. Pratson LF, Ryan WBF, Mountain GS, Twichell DC (1994) Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope. Geol Soc Am Bull 106:395–412CrossRefGoogle Scholar
  40. Rahiman TIH, Pettinga JR, Watts P (2007) The source mechanism and numerical modeling of the 1953 Suva tsunami, Fiji. Mar Geol 237:55–70CrossRefGoogle Scholar
  41. Rebesco M, Camerlenghi A (eds) (2008) Contourites. Developments in sedimentology, vol 60. Elsevier, AmsterdamGoogle Scholar
  42. Rebesco M, Stow DA (2001) Seismic expression of contourites and related deposits: a preface. Mar Geophys Res 22:303–308CrossRefGoogle Scholar
  43. Reid JL (1989) On the total geostrophic circulation of the South Atlantic Ocean: flow patterns, tracers and transports. Prog Oceanogr 23:149–244CrossRefGoogle Scholar
  44. Schnabel M, Franke D, Engels M, Hinz K, Neben S, Damm V, Grassmann S, Pelliza H, Dos Santos PR (2008) The structure of the lower crust at the Argentine continental margin, South Atlantic at 44°S. Tectonophysics 454:14–22CrossRefGoogle Scholar
  45. Schwenk T, Spieß V, Hübscher C, Breitzke M (2003) Frequent channel avulsions within the active channel-levee system of the middle Bengal Fan - an exceptional channel-levee development derived from Parasound and Hydrosweep data. Deep Sea Res II 50(5):1023–1045CrossRefGoogle Scholar
  46. Spieß V, cruise participants (2002) Report and preliminary results of Meteor Cruise M 49/2, Montevideo (Uruguay) - Montevideo, 13.02. - 07.03.2001. Berichte, Fachbereich Geowissenschaften, Universtät BremenGoogle Scholar
  47. Stow D, Faugères J-C (2008) Contourite facies and the facies model. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, vol 60. Elsevier, Amsterdam, pp 223–256Google Scholar
  48. Stow D, Mayall M (2000) Deep-water sedimentary systems: new models for the 21st century. Mar Petrol Geol 17:125–136CrossRefGoogle Scholar
  49. Tappin DR, Watts P, McMurty M, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar Geol 175:1–23CrossRefGoogle Scholar
  50. Twichell DC, Roberts DG (1982) Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore Canyons. Geology 10:408–412CrossRefGoogle Scholar
  51. Uliana MA, Biddle KT, Cerdan J (1989) Mesozoic extension and formation of Argentine sedimentary basins. In: Tankard AJ, Balkwill HR (eds) Extensional tectonics and stratigraphy of the North Atlantic margins. AAPG Memoir 46:519–614Google Scholar
  52. von Lom-Keil H, Spiess V, Hopfauf V (2002) Fine-grained sediment waves on the western flank of the Zapiola Drift, Argentine Basin: evidence for variations in Late Quaternary bottom flow activity. Mar Geol 192:239–258CrossRefGoogle Scholar
  53. Ward SN (2001) Landslide tsunami. J Geophys Res 106(B6):11201–11215CrossRefGoogle Scholar
  54. Watts P, Imamura F, Grilli ST (2000) Comparing model simulations of three benchmark tsunami generation cases. Sci Tsunami Hazards 18(2):107–124Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sebastian Krastel
    • 1
    Email author
  • Gerold Wefer
    • 2
  • Till J. J. Hanebuth
    • 2
  • Andrew A. Antobreh
    • 3
  • Tim Freudenthal
    • 2
  • Benedict Preu
    • 2
  • Tilmann Schwenk
    • 2
  • Michael Strasser
    • 2
  • Roberto Violante
    • 4
  • Daniel Winkelmann
    • 1
  • M78/3 shipboard scientific party
  1. 1.Cluster of Excellence: The Future Ocean, Christian-Albrechts-Universität zu KielLeibniz Institute of Marine Sciences (IFM-GEOMAR)KielGermany
  2. 2.MARUM—Center for Marine Environmental Sciences, and Faculty of GeosciencesUniversity of BremenBremenGermany
  3. 3.Exploro Geoservices ASSandvikaNorway
  4. 4.Department of Oceanography, Division of Marine Geology and GeophysicsArgentina Hydrographic SurveyBuenos AiresArgentina

Personalised recommendations