Geo-Marine Letters

, Volume 31, Issue 4, pp 249–258 | Cite as

Coupled penetrometer, MBES and ADCP assessments of tidal variations in surface sediment layer characteristics along active subaqueous dunes, Danish Wadden Sea

  • Nina StarkEmail author
  • Hendrik Hanff
  • Christian Svenson
  • Verner B. Ernstsen
  • Alice Lefebvre
  • Christian Winter
  • Achim Kopf


In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the Danish Wadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ∼1 cm depicting a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1–3 kPa in the top layer, 20–140 kPa in the underlying sediment; thickness of the top layer ca. 5–8 cm). Observed variations in the thickness and strength of the surface layer during a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter intensity). The results revealed an ebb dominance in sediment remobilization, and a general accretion of the bed towards low water. A loose top layer occurred throughout the tidal cycle, likely influenced by bedload transport and small events of suspended sediment resettlement (thickness: 6 ± 2 cm). Furthermore, this layer showed a significant increase in thickness (e.g. from 8 cm to 16 cm) related to periods of overall deposition. These findings imply that dynamic penetrometers can conveniently serve to (1) quantify potentially mobile sediments by determining the thickness of a loose sediment surface layer, (2) unravel sediment strength development in potentially mobile sediments and (3) identify sediment accumulation. Such data are an important complement and add a new geotechnical perspective during investigations of sediment remobilization processes in highly dynamic coastal environments.


Tidal Cycle Acoustic Doppler Current Profiler Backscatter Intensity Sediment Mobilization Sediment Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the German Research Association (via MARUM, Center of Excellence at the University of Bremen, and GLOMAR, Bremen International Graduate School for Marine Sciences) for funding this study. We thank the crew of the R/V Senckenberg for support. We are particularly indebted to Matthias Lange (MARUM) and Matthias Colsmann (AVISARO, Hannover). Also, the manuscript benefited significantly from comments by an anonymous reviewer and the journal editors.


  1. Anthony D, Leth JO (2002) Large-scale bedforms, sediment distribution and sand mobility in the eastern North Sea off the Danish west coast. Mar Geol 182:247–263Google Scholar
  2. Ashley G (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sed Pet 60:160–172Google Scholar
  3. Aubeny CP, Shi H (2006) Interpretation of impact penetrometer measurements in soft clay. J Geotech Geoenviron Eng 132(6):770–777CrossRefGoogle Scholar
  4. Bartholomä A, Ernstsen VB, Flemming BW, Bartholdy J (2004) Bedform dynamics and net sediment transport paths over a flood-ebb tidal cycle in the Grådyb channel (Denmark), determined by high-resolution multi-beam echosounding. Danish J Geogr 104(1):45–55Google Scholar
  5. Blomqvist S (1991) Quantitative sampling of soft-bottom sediments: problems and solutions. Mar Ecol Prog Ser 72:295–304CrossRefGoogle Scholar
  6. Cai G, Liu S, Tong L, Du G (2009) Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles. Eng Geol 104:211–222CrossRefGoogle Scholar
  7. Cassidy M, Houlsby GT (2002) Vertical bearing capacity factors for conical footings on sand. Geotechnique 52(9):687–692CrossRefGoogle Scholar
  8. Coco G, Murray AB, Green MO (2007a) Sorted bed forms as self-organized patterns: 1. Model development. J Geophys Res 112:F03015. doi: 10.1029/2006JF000665 CrossRefGoogle Scholar
  9. Coco G, Murray AB, Green MO, Thieler ER, Hume TM (2007b) Sorted bed forms as self-organized patterns: 2. Complex forcing scenarios. J Geophys Res 112:F03016. doi: 10.1029/2006JF000666 CrossRefGoogle Scholar
  10. Das BM (1990) Principles of geotechnical engineering. PWS-Kent, BostonGoogle Scholar
  11. Dayal U, Allen JH (1975) The effect of penetration rate on the strength of remolded clay and sand samples. Can Geotech J 12:336–348CrossRefGoogle Scholar
  12. Dill RF, Moore DG (1965) A diver-held vane-shear apparatus. Mar Geol 3:323–327CrossRefGoogle Scholar
  13. Emerson CW (1991) A method for the measurement of bedload sediment transport and passive faunal transport on intertidal sandflats. Estuaries 14(4):361–371CrossRefGoogle Scholar
  14. Ernstsen VB, Noormets R, Hebbeln D, Bartholomä A, Flemming BW (2006a) Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo Mar Lett 26(3):141–149. doi: 10.1007/s00367-006-0025-3 CrossRefGoogle Scholar
  15. Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholomä A, Flemming BW, Bartholdy J (2006b) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo Mar Lett 26(3):151–163. doi: 10.1007/s00367-006-0026-2 CrossRefGoogle Scholar
  16. Gaeuman D, Jacobson RB (2006) Acoustic bed velocity and bed load dynamics in a large sand bed river. J Geophys Res 111:F02005. doi: 10.1029/2005JF000411 CrossRefGoogle Scholar
  17. Klagenberg PA, Knudsen SB, Sørensen C, Sørensen P (2008) Morphological development in the Wadden Sea, Knudedyb tidal area (in Danish). Danish Coastal Authority, EsbjergGoogle Scholar
  18. Kostaschuk R, Best J (2005) Response of sand dunes to variations in tidal flow: Fraser Estuary, Canada. J Geophys Res 110:F04S04, 10.1029/2004JF000176CrossRefGoogle Scholar
  19. Louge MY, Valance A, Ould el-Moctar A, Dupont P (2010) Packing variations on a ripple of nearly monodisperse dry sand. J Geophys Res 115:F02001. doi: 10.1029/2009JF001384 CrossRefGoogle Scholar
  20. Lunne T, Powell JJM, Robertson PK (1997) Cone penetration testing in geotechnical practice. Spon, LondonGoogle Scholar
  21. Meyerhof GG (1953) The bearing capacity of foundations under eccentric and inclined loads. In: Proc 3rd Int Conf Soil Mechanics and Foundation Engineering, Zurich, vol 1, pp 1–19Google Scholar
  22. Pedersen JBT, Bartholdy J (2006) Budgets for fine-grained sediment in the Danish Wadden Sea. Mar Geol 235:101–117CrossRefGoogle Scholar
  23. Rubin DM, McCulloch DS (1980) Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations. Sed Geol 26:207–231CrossRefGoogle Scholar
  24. Siegle E, Huntley DA, Davidson MA (2004) Physical controls on the dynamics of inlet sandbar systems. Ocean Dyn 54:360–373CrossRefGoogle Scholar
  25. Stark N, Wever T (2009) Unraveling subtle details of expendable bottom penetrometer (XBP) deceleration profiles. Geo Mar Lett 29(1):39–45. doi: 10.1007/s00367-008-0119-1 CrossRefGoogle Scholar
  26. Stark N, Hanff H, Kopf A (2009a) Nimrod: a tool for rapid geotechnical characterization of surface sediments. Sea Technology, April 2009, pp 10–14Google Scholar
  27. Stark N, Hanff H, Stegmann S, Wilkens R, Kopf A (2009b) Geotechnical investigations of sandy seafloors using dynamic penetrometers. In: Proc MTS/IEEE Oceans 2009, Biloxi, MS,
  28. Stegmann S, Villinger H, Kopf A (2006a) Design of a modular, marine free-fall cone penetrometer. Sea Technol 47:27–33Google Scholar
  29. Stegmann S, Moerz T, Kopf A (2006b) Initial results of a new free fall-cone penetrometer (FF-CPT) for geotechnical in-situ characterisation of soft marine sediments. Norwegian J Geol 86:199–208Google Scholar
  30. Stoll RD, Akal T (1999) XBP-tool for rapid assessment of seabed sediment properties. Sea Technol 40:47–51Google Scholar
  31. Stoll RD, Sun YF, Bitte I (2004) Measuring sea bed properties using static and dynamic penetrometers. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NYGoogle Scholar
  32. Stoll RD, Sun YF, Bitte I (2007) Seafloor properties from penetrometer tests. IEEE J Oceanic Eng 32(1):57–63CrossRefGoogle Scholar
  33. Svenson C, Ernstsen VB, Winter C, Bartholomä A, Hebbeln D (2009) Tide-driven sediment variations on a large compound dune in the Jade tidal inlet channel, Southeastern North Sea. J Coast Res 56:361–365Google Scholar
  34. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  35. Winter C, Chiou MD, Riethmüller R, Ernstsen VB, Hebbeln D, Flemming BW (2006) The concept of “representative tides” in morphodynamic numerical modelling. Geo Mar Lett 26(3):125–132. doi: 10.1007/s00367-006-0031-5 CrossRefGoogle Scholar
  36. Zeiler M, Schulz-Ohlberg J, Figge K (2000) Mobile sand deposits and shoreface sediment dynamics in the inner German Bight (North Sea). Mar Geol 170:363–380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nina Stark
    • 1
    Email author
  • Hendrik Hanff
    • 1
  • Christian Svenson
    • 1
  • Verner B. Ernstsen
    • 1
  • Alice Lefebvre
    • 1
  • Christian Winter
    • 1
  • Achim Kopf
    • 1
  1. 1.MARUM-Center for Marine Environmental SciencesBremenGermany

Personalised recommendations