Geo-Marine Letters

, Volume 30, Issue 6, pp 605–616 | Cite as

Clay-mineral and grain-size distributions in surface sediments of the White Sea (Arctic Ocean): indicators of sediment sources and transport processes

  • Cornelia Saukel
  • Rüdiger Stein
  • Christoph Vogt
  • Vladimir P. Shevchenko
Original

Abstract

In this study, the grain-size and clay-mineral compositions of 73 surface sediment samples collected in a variety of environmental settings in the White Sea are presented to characterize recent sedimentation processes, reconstruct transport pathways, and identify potential source areas of the terrigenous components. Areas >100 m deep are invariably characterized by silty clay, whereas areas <100 m deep exhibit more heterogeneous grain-size compositions plausibly explained by coastal erosion and (re-)distribution mechanisms, particularly tidal currents. The dominance of sand in the estuarine areas of the Onega and Dvina rivers as well as toward the Gorlo Strait connecting the White Sea with the Barents Sea is attributed to increased current speeds. Illite and smectite are the dominant clay minerals in recent sediments of the southwestern and eastern White Sea sectors, respectively. Their distribution patterns largely depend on the geology of the source areas, and mirror surface circulation patterns, especially in Dvina Bay. Smectite is a key clay mineral in White Sea surface sediments, as it reveals the dominating influence of the Northern Dvina’s runoff on sedimentation and water circulation throughout the basin. In comparison to other Eurasian shelf seas, the White Sea is characterized by a greater diversity of clay-mineral assemblages, which range from illite- to smectite-dominated sectors containing variable amounts of chlorite and kaolinite.

References

  1. ACIA (2005) Arctic climate impact assessment scientific report 2005. Cambridge University, CambridgeGoogle Scholar
  2. Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc Series B Stat Methodol 44(2):139–177Google Scholar
  3. Aksyonov AA (ed) (1987) Arctic shelf of Eurasia in late quaternary (in Russian). Nauka, MoscowGoogle Scholar
  4. Babkov A, Golikov A (1984) Hydrobiocomplexes of the White Sea (in Russian). Zoologichesky Institute, AN SSSR, LeningradGoogle Scholar
  5. Belderson RH, Johnson MA, Stride AH (1978) Bed-load partings and convergences at the entrance to the White Sea, U.S.S.R., and between Cape Cod and Georges Bank, U.S.A. Mar Geol 28:65–75CrossRefGoogle Scholar
  6. Berger V, Dahle S, Galaktionov K, Kosobokova X, Naumov A, Rat’kova R, Savinov V, Savinov T (2001) White Sea. Ecology and environment. Derzavets, St. PetersburgGoogle Scholar
  7. Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832. doi:10.1130/0016-7606 CrossRefGoogle Scholar
  8. Chamley H (1989) Clay sedimentology. Springer, BerlinGoogle Scholar
  9. Darby DA, Naidu AS, Mowatt TC, Jones G (1989) Sediment composition and sedimentary processes in the Arctic Ocean. In: Herman Y (ed) The Arctic seas—climatology, oceanography, geology, and biology. Van Nostrand Reinhold, New York, pp 657–720Google Scholar
  10. Davies D, Bouldin D (1979) A cluster separation measure. IEEE Trans Pattern Anal Machine Intell PAMI 1:224–227CrossRefGoogle Scholar
  11. Dolginow J, Kropatschjow S (1994) Geologie Russlands und angrenzender Staaten. Deutsche Bearbeitung von E. Klitzsch. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  12. Ehrmann W, Melles M, Kuhn G, Grobe H (1992) Significance of clay-mineral assemblages in the Antarctic Ocean. Mar Geol 107:249–273. doi:10.1016/j.margeo.2004.05.027 CrossRefGoogle Scholar
  13. Elverhøi A, Pfirman SL, Solheim A, Larssen BB (1989) Glaciomarine sedimentation in epicontinental seas exemplified by the Northern Barents Sea. Mar Geol 85:225–250. doi:10.1016/0025-3227(89)90155-2 CrossRefGoogle Scholar
  14. Filatov N, Pozdnyakov D, Johannessen O, Pettersson L, Bobylev L (2005) White Sea—Its marine environment and ecosystem dynamics influenced by global change. Springer, BerlinGoogle Scholar
  15. Fütterer D, Galimov E (2003) Siberian river run-off into the Kara Sea: characterization, quantification, variability and environmental significance—an introduction. In: Stein R, Fahl K, Fütterer D (eds) Siberian river run-off into the Kara Sea: characterization, quantification, variability and environmental significance. Proceedings in Marine Science, vol 6. Elsevier, Amsterdam, pp 1–8Google Scholar
  16. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158. doi:10.1038/35051500 CrossRefGoogle Scholar
  17. Gordeev V (2000) River input of water, sediment, major ions, nutrients, and trace metals from Russian territory to the Arctic Ocean. In: Lewis E, Jones EP, Lemke P, Prowse TD, Wadhams P (eds) The freshwater budget of the Arctic Ocean. Kluwer, Dordrecht, pp 297–322Google Scholar
  18. Gordeev V, Martin J, Sidorov I, Sidorova M (1996) A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci 296:664–691CrossRefGoogle Scholar
  19. Gurevich VI (1995) Recent sedimentogenesis and environment of the Arctic shelf of western Eurasia. Norsk Polarinst Meddelelser 131:1–92Google Scholar
  20. Harms IH, Karcher MJ, Dethleff D (2000) Modelling Siberian river runoff—implications for contaminant transport in the Arctic Ocean. J Mar Syst 27:95–115. doi:10.1016/S0924-7963(00)00062-2 CrossRefGoogle Scholar
  21. IPCC (2007) Intergovernmental Panel on Climate Change report 2007. IPCC, GenevaGoogle Scholar
  22. Kalinenko V (2001) Clay minerals in sediments of the Arctic seas. Lithol Mineral Resources 36(4):418–429Google Scholar
  23. Kalinenko V, Rateev M, Kheirov M, Shevchenko A (1974) Clay minerals in sediments of the White Sea (in Russian). Lithol Mineral Resources 4:10–23Google Scholar
  24. Krylov AA, Andreeva IA, Vogt C, Backman J, Krupskaya VV, Grikurov GE, Moran K, Shoji H (2008) A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography 23:1–10. doi:10.1029/2007PA001497 CrossRefGoogle Scholar
  25. Leonov AV, Chicherina OV (2004) Nutrient transport into the White Sea with river runoff. Water Resour 31(2):152–173CrossRefGoogle Scholar
  26. Lisitzin AP (1995) The marginal filter of the ocean. Oceanology 34:671–682Google Scholar
  27. Lisitzin AP (2002) Sea-ice and iceberg sedimentation in the ocean. Recent and past. Springer, BerlinGoogle Scholar
  28. Lisitzin AP (2010) Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes. Russ Geol Geophys 51:12–47CrossRefGoogle Scholar
  29. Migdisov A, Balashov Y, Sharkov K, Sherstennikov O, Ronov A (1994) Distribution of rare earth elements in main lithological types of sedimentary cover of the Russian Plate (in Russian). Geochemistry 6:789–803Google Scholar
  30. Milanovsky E (1987) Geology of the USSR. Part 1 (in Russian). Moscow State University, MoscowGoogle Scholar
  31. Nevesskiy EN, Medvedev VS, Kalinenko VV (1977) The White Sea: sedimentogenesis and history of development in Holocene (in Russian). Nauka, MoscowGoogle Scholar
  32. Nürnberg D, Wollenburg I, Dethleff D, Eicken H, Kassens H, Letzig T, Reimnitz E, Thiede J (1994) Sediments in the arctic sea ice: implications for entrainment, transport and release. In: Thiede J, Vorren T, Spielhagen R (eds) Arctic Ocean marine geology. Mar Geol 119:185–214Google Scholar
  33. Nürnberg D, Levitan M, Pavlidis J, Shelekova E (1995) Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas. Geol Rundsch 84:665–682CrossRefGoogle Scholar
  34. Pavlidis Y, Sherbakov F, Shevchenko A (1995) Clay minerals in bottom sediments of Cuba and the White Sea shelves: a comparison of geological and climatic controls. Oceanology 35(1):112–118Google Scholar
  35. Pawlowsky-Glahn V, Egozcue JJ (2006) Compositional data and their analysis: an introduction. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional data analysis in the geosciences: from theory to practice. Geol Soc Lond Spec Publ 264:1–10Google Scholar
  36. Peterson B, Holmes R, McClelland J, Vörösmarty C, Lammer R, Shiklomanov A, Shikolomanov I, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173. doi:10.1126/science.1077445 CrossRefGoogle Scholar
  37. Petschick R, Kuhn G, Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229. doi:10.1016/0025-3227(95)00148-4 CrossRefGoogle Scholar
  38. Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Dupré B (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem Geol 273:136–149CrossRefGoogle Scholar
  39. Press F, Siever R (1995) Allgemeine geologie. Spektrum, HeidelbergGoogle Scholar
  40. Rachold V, Grigoriev M, Are F, Solomon S, Reimnitz E, Kassens H, Antonow M (2000) Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. Int J Earth Sci 89:450–460. doi:10.1007/s005310000113 CrossRefGoogle Scholar
  41. Rachold V, Are FE, Atkinson DE, Cherkashov G, Solomon SM (2005) Arctic Coastal Dynamics (ACD): an introduction. In: Rachold V et al. (eds) Arctic Coastal Dynamics. Geo-Mar Lett SI 25(2/3):63–68. doi:10.1007/s00367-004-0187-9 CrossRefGoogle Scholar
  42. Rateev MA, Sadchikova TA, Shabrova VP (2008) Clay minerals in recent sediments of the world ocean and their relation to types of lithogenesis. Lithol Mineral Resources 43(2):125–135. doi:10.1134/S002449020802003X CrossRefGoogle Scholar
  43. Schoster F, Behrends M, Müller C, Stein R, Wahsner M (2000) Modern river discharge and pathways of supplied material in the Eurasian Arctic Ocean: evidence from mineral assemblages and major and minor element distribution. Int J Earth Sci 89:486–495. doi:10.1007/s005310000120 CrossRefGoogle Scholar
  44. Schumann W (1997) Der neue BLV Steine- und Mineralienführer. BLV Verlagsgesellschaft, MünchenGoogle Scholar
  45. Seibold E (1974) Der Meeresboden. Ergebnisse und Probleme der Meeresgeologie. Springer, BerlinGoogle Scholar
  46. Semenov EV, Luneva MV (1999) The joint effect of tide, stratification, and vertical turbulence on formation of hydrophysical fields of the White Sea (in Russian). Physics Atmosphere Ocean 35:660–678Google Scholar
  47. Shapiro GI, Latché L, Pantiulin AN (2003) Mixing processes in the Gorlo Strait of the White Sea. Oceanology 43:26–31Google Scholar
  48. Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158Google Scholar
  49. Shevchenko V, Dolotov Y, Filatov N, Alexeeva T, Filippov A, Nöthig E-M, Novigatsky A, Pautova L, Platanov A, Politova N, Rat’kova T, Stein R (2005) Biogeochemistry of the Kem River estuary, White Sea (Russia). Hydrol Earth Syst Sci 9:57–66CrossRefGoogle Scholar
  50. Shevchenko VP, Pokrovsky OS, Filippov AS, Lisitzin AP, Bobrov VA, Bogunov AY, Zavernina NN, Zolotykh EO, Isaeva AB, Kokryatskaya NM, Korobov VB, Kravchishina MD, Novigatsky AN, Politova NV (2010) On the elemental composition of the Severnaya Dvina River (White Sea Region). Dokl Earth Sci 430(2):228–234CrossRefGoogle Scholar
  51. Stein R (2008) Arctic Ocean sediments: processes, proxies, and palaeoenvironment. Developments in marine geology, vol 2. Elsevier, AmsterdamGoogle Scholar
  52. Stein R, Macdonald R (eds) (2004) The organic carbon cycle in the Arctic Ocean. Springer, BerlinGoogle Scholar
  53. Stein R, Grobe H, Wahsner M (1994) Organic carbon, carbonate, and clay-mineral distributions in eastern central arctic ocean surface sediments. In: Thiede J, Vorren T, Spielhagen R (eds) Arctic Ocean marine geology. Mar Geol 119:269–285. doi:10.1016/0025-3227(94)90185-6
  54. Tucker M (1996) Methoden der Sedimentologie. Ferdinand Enke, StuttgartGoogle Scholar
  55. Viscosi-Shirley C, Mammone K, Pisias N, Dymond J (2003) Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting. Cont Shelf Res 23:1175–1200. doi:10.1002/jqs.1152 CrossRefGoogle Scholar
  56. Vogt C (1997) Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes (in German). Alfred-Wegener-Institut, Bremerhaven, Ber Polarforsch 251(30/42):1–309Google Scholar
  57. Vogt C, Knies J (2008) Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation—the clay mineral group smectite perspective. Mar Geol 250:211–222. doi:10.1016/j.margeo.2008.01.006 CrossRefGoogle Scholar
  58. Vogt C, Knies J (2009) Sediment pathways in the western Barents Sea inferred from clay mineral assemblages in surface sediments. Norwegian J Geol 89:41–55Google Scholar
  59. Wahsner M, Müller C, Stein R, Ivanov G, Levitan M, Shelekhova E, Tarasov G (1999) Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways—a synthesis. Boreas 28:215–233. doi:10.1080/030094899421272 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Cornelia Saukel
    • 1
  • Rüdiger Stein
    • 1
  • Christoph Vogt
    • 2
  • Vladimir P. Shevchenko
    • 3
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Crystallography/ZEKAMUniversity of BremenBremenGermany
  3. 3.P.P. Shirshov Institute of Oceanology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations