Geo-Marine Letters

, Volume 30, Issue 3–4, pp 187–206 | Cite as

Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea

  • Thomas PapeEmail author
  • Sabine Kasten
  • Matthias Zabel
  • André Bahr
  • Friedrich Abegg
  • Hans-Jürgen Hohnberg
  • Gerhard Bohrmann


We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and δ13C-CH4 values of −50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO 4 2− and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.


Gravity Core Hydrate Dissociation Pressure Core Hydrate Limit Anaximander Mountain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully thank the captain and crew of the R/V METEOR, as well as the ROV ‘MARUM-QUEST 4000 m’ team (MARUM, Bremen) for their excellent support during cruise M70/3. We are indebted to S. Pape, A. Gassner (MARUM), and T. Wilhelm (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven) for sampling and analysis of pore-water. M. Brüning (MARUM) provided bathymetric map material. K. Stange (IFM-GEOMAR, Leibniz Institute of Marine Sciences, Kiel) is thanked for some stable carbon isotope measurements on methane. K.-U. Hinrichs, M. Elvert, and X. Prieto-Mollar (all MARUM) are thanked for analytical support during stable carbon isotope measurements of volatile hydrocarbons. This paper has benefited considerably from the constructive comments of two anonymous reviewers. This study was funded through DFG-Research Center/Excellence Cluster MARUM ‘The Ocean in the Earth System’.


  1. Abegg F, Hohnberg HJ, Pape T, Bohrmann G, Freitag J (2008) Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. Deep Sea Res I 55:1590–1599CrossRefGoogle Scholar
  2. Aksu AE, Hall J, Yaltirak C (2009) Miocene-Recent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Mar Geol 258:24–47CrossRefGoogle Scholar
  3. Aloisi G, Pierre C, Rouchy J-M, Foucher J-P, Woodside J, the MEDINAUT Scientific Party (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184:321–338CrossRefGoogle Scholar
  4. Aloisi G, Wallmann K, Haese RR, Saliège JF (2004) Chemical, biological and hydrological controls on the 14C content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps. Chem Geol 213:359–383CrossRefGoogle Scholar
  5. Beal EJ, House CH, Orphan VJ (2009) Manganese- and Iron-dependent marine methane oxidation. Science 325:184–187CrossRefGoogle Scholar
  6. Bernard BB, Brooks JM, Sackett WM (1976) Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett 31:48–54CrossRefGoogle Scholar
  7. Bhatnagar G, Chapman WG, Dickens GR, Dugan B, Hirasaki GJ (2008) Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments. Geophys Res Lett 35:L03611. doi: 10.1029/2007GL032500 CrossRefGoogle Scholar
  8. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  9. Bohrmann G, Ivanov M, Foucher J-P, Spiess V, Bialas J, Greinert J, Weinrebe W, Abegg F, Aloisi G, Artemov Y, Blinova V, Drews M, Heidersdorf F, Krabbenhöft A, Klaucke I, Krastel S, Leder T, Polikarpov I, Saburova M, Schmale O, Seifert R, Volkonskaya A, Zillmer M (2003) Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. In: Woodside JM, Garrison RE, Moore JC, Kvenvolden KA (eds) Proc 7th Int Conf Gas in Marine Sediments, 7–11 October 2002, Baku, Azerbaijan. Geo-Mar Lett SI 23:239–249. doi: 10.1007/s00367-003-0157-7 CrossRefGoogle Scholar
  10. Bohrmann G, Abegg F, Bahr A, Bergenthal M, Brüning M, Brinkmann F, Dentrecolas S, Franke P, Gassner A, Hessler S, Hohnberg H-J, Hüttich D, Illhan T, Klapp SA, Kopiske E, Meyer J-P, Nikolovska A, Olu-Le Roy K, Pape T, Pollmeyer A, Ratmeyer V, Renken J, Reuter M, Sick E, Suck I, Temel Ö, Truscheid T, Waldmann C, Wilhelm T, Zarrouk M (2008) Report and preliminary results of R/V METEOR cruise M70/3, Iraklion—Iraklion, 21 November—8 December, 2006. Cold seeps of the Anaximander Mountains / Eastern Mediterranean. In: Berichte, Fachbereich Geowissenschaften, Universität Bremen, Bremen, p 75Google Scholar
  11. Borowski WS, Paull CK, Ussler W III (1996) Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24:655–658CrossRefGoogle Scholar
  12. Borowski WS, Paull CK, Ussler W III (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates. Mar Geol 159:131–154CrossRefGoogle Scholar
  13. Bourry C, Chazallon B, Charlou JL, Donval JP, Ruffine L, Henry P, Geli L, Çagatay MN, Inan S, Moreau M (2009) Free gas and gas hydrates from the Sea of Marmara, Turkey: chemical and structural characterization. Chem Geol 264:197–206CrossRefGoogle Scholar
  14. Camerlenghi A, Cita MB, Della Vedova B, Fusi N, Mirabile L, Pellis G (1995) Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Mar Geophys Res 17:115–141CrossRefGoogle Scholar
  15. Castellini DG, Dickens GR, Snyder GT, Ruppel CD (2006) Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chem Geol 226:1–30CrossRefGoogle Scholar
  16. Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste P, Foucher JP, Woodside J, MEDINAUT Scientific Party (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Res I 50:941–958CrossRefGoogle Scholar
  17. Clayton C (1991) Carbon isotope fractionation during natural gas generation from kerogen. Mar Petrol Geol 8:232–240CrossRefGoogle Scholar
  18. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–459CrossRefGoogle Scholar
  19. Dählmann A, de Lange GJ (2003) Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sci Lett 212:377–391CrossRefGoogle Scholar
  20. de Beer D, Sauter E, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnol Oceanogr 51:1315–1331CrossRefGoogle Scholar
  21. de Lange GJ, Brumsack H-J (1998) The occurrence of gas hydrates in Eastern Mediterranean mud dome structures as indicated by pore-water composition. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Lond Spec Publ 137:167–175CrossRefGoogle Scholar
  22. Dickens GR (2001) Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochim Cosmochim Acta 65:529–543CrossRefGoogle Scholar
  23. Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183CrossRefGoogle Scholar
  24. Dickens GR, Quinby-Hunt MS (1997) Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. J Geophys Res 102:773–783CrossRefGoogle Scholar
  25. Dickens GR, Paull CR, Wallace P, ODP Leg 164 scientific party (1997) Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385:426–428CrossRefGoogle Scholar
  26. Dickens GR, Wallace PJ, Paull CK, Borowski WS (2000) Detection of methane gas hydrate in the pressure core sampler (PCS): volume-pressure-time relations during controlled degassing experiments. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the Ocean Drilling Program, College Station, TX, Sci Results 164:113–126Google Scholar
  27. Dickens GR, Schroeder D, Hinrichs K-U, the Leg 201 scientific party (2003) The pressure core sampler (PCS) on ODP Leg 201: general operations and gas release. In: D’Hondt SL, Jørgensen BB, Miller DJ et al. (eds) Proceedings of the Ocean Drilling Program, College Station, TX, Initial Rep vol 201Google Scholar
  28. Dickens GR, Kölling M, Smith DC, Schnieders L, IODP Expedition 302 Scientists (2007) Rhizon sampling of pore waters on scientific drilling expeditions: an example from the IODP Expedition 302, Arctic Coring Expedition (ACEX). Sci Drill 4:22–25Google Scholar
  29. Dimitrov LI (2002) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76CrossRefGoogle Scholar
  30. Dimitrov L, Woodside J (2003) Deep sea pockmark environments in the eastern Mediterranean. Mar Geol 195:263–276CrossRefGoogle Scholar
  31. Etiope G, Ciccioli P (2009) Earth’s degassing: a missing ethane and propane source. Science 323:478CrossRefGoogle Scholar
  32. Feseker T, Foucher J-P, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247:194–207CrossRefGoogle Scholar
  33. Feseker T, Pape T, Wallmann K, Klapp SA, Schmidt-Schierhorn F, Bohrmann G (2009a) The thermal structure of the Dvurechenskii mud volcano and its implications for gas hydrate stability and eruption dynamics. Mar Petrol Geol 26:1812–1823CrossRefGoogle Scholar
  34. Feseker T, Dählmann A, Foucher J-P, Harmegnies F (2009b) In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea. Mar Geol 261:128–137CrossRefGoogle Scholar
  35. Ginsburg GD, Milkov AV, Soloviev VA, Egorov AV, Cherkashev GA, Vogt PR, Crane K, Lorenson TD, Khutorskoy MD (1999) Gas hydrate accumulation at the Håkon Mosby Mud Volcano. Geo-Mar Lett 19:57–67. doi: 10.1007/s003670050093 CrossRefGoogle Scholar
  36. Grasshoff K, Kremling K, Erhardt M (1999) Methods of seawater analysis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  37. Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet Sci Lett 244:1–15CrossRefGoogle Scholar
  38. Gupta A, Lachance J, Sloan ED, Koh CA (2008) Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry. Chem Eng Sci 63:5848–5853CrossRefGoogle Scholar
  39. Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Lett 36:L18504. doi: 10.1029/2009GL039805 CrossRefGoogle Scholar
  40. Hachikubo A, Khlystov O, Krylov A, Sakagami H, Minami H, Nunokawa Y, Yamashita S, Takahashi N, Shoji H, Nishio S, Kida M, Ebinuma T, Kalmychkov G, Poort J (2010) Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. In: Bohrmann G, Jørgensen BB (eds) Proc 9th Int Conf Gas in Marine Sediments, 15–19 September 2008, Bremen. Geo-Mar Lett SI 30 (in press)CrossRefGoogle Scholar
  41. Haese RR, Meile C, Van Cappellen P, de Lange GJ (2003) Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth Planet Sci Lett 212:361–375CrossRefGoogle Scholar
  42. Haese RR, Hensen C, de Lange GJ (2006) Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225:191–208CrossRefGoogle Scholar
  43. Hall POJ, Aller RC (1992) Rapid small-volume flow-injection analysis for CO2 and NH4 in marine sediments. Limnol Oceanogr 35:1113–1119CrossRefGoogle Scholar
  44. Heeschen KU, Dählmann A, Hohnberg H-J, Lykousis V, Perissoratis C, de Lange G, Amann H, Bohrmann G (2006) Pressurized near-surface sediment cores of Anaximander mud volcanoes, Eastern Mediterranean. Geophys Res Abstr 8:07005Google Scholar
  45. Heeschen KU, Hohnberg HJ, Haeckel M, Abegg F, Drews M, Bohrmann G (2007) In situ hydrocarbon concentrations from pressurized cores in surface sediments, Northern Gulf of Mexico. Mar Chem 107:498–515CrossRefGoogle Scholar
  46. Hesse R, Harrison WE (1981) Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet Sci Lett 55:453–462CrossRefGoogle Scholar
  47. Hester KC, Dunk RM, Walz PM, Peltzer ET, Sloan ED, Brewer PG (2007) Direct measurements of multi-component hydrates on the seafloor: pathways to growth. Fluid Phase Equil 261:396–406CrossRefGoogle Scholar
  48. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems. Springer, Berlin, pp 457–477Google Scholar
  49. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805CrossRefGoogle Scholar
  50. Huguen C, Mascle J, Woodside J, Zitter T, Foucher JP (2005) Mud volcanoes and mud domes of the Central Mediterranean Ridge: near-bottom and in situ observations. Deep Sea Res I 52:1911–1931CrossRefGoogle Scholar
  51. Huguen C, Foucher JP, Mascle J, Ondréas H, Thouement M, Gontharet S, Stadnitskaia A, Pierre C, Bayon G, Loncke L, Boetius A, Bouloubassi I, de Lange G, Caprais JC, Fouquet Y, Woodside J, Dupré S, the NAUTINIL shipboard party (2009) Menes caldera, a highly active site of brine seepage in the eastern Mediterranean sea: “in situ” observations from the Nautinil expedition (2003). Mar Geol 261:138–152CrossRefGoogle Scholar
  52. Ivanov MK, Limonov AF, van Weering TCE (1996) Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Mar Geol 132:253–271CrossRefGoogle Scholar
  53. Iversen N, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955CrossRefGoogle Scholar
  54. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson ML, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238CrossRefGoogle Scholar
  55. Kaul N, Foucher J-P, Heesemann M (2006) Estimating mud expulsion rates from temperature measurements on Håkon Mosby Mud Volcano, SW Barents Sea. Mar Geol 229:1–14CrossRefGoogle Scholar
  56. Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamshita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33:L24603. doi: 10.1029/20006GL028296 CrossRefGoogle Scholar
  57. Klapp SA, Bohrmann G, Kuhs WF, Murshed MM, Pape T, Klein H, Techmer KS, Heeschen KU, Abegg F (2010) Microstructures of structure I and II gas hydrates from the Gulf of Mexico. Mar Petrol Geol 27:116–125CrossRefGoogle Scholar
  58. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901CrossRefGoogle Scholar
  59. Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40(2):1–52CrossRefGoogle Scholar
  60. Kopf A, Behrmann JH (2000) Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. Geol Soc Lond Spec Publ 174:169–204CrossRefGoogle Scholar
  61. Kvenvolden KA, Rogers BW (2005) Gaia’s breath—global methane exhalations. Mar Petrol Geol 22:579–590CrossRefGoogle Scholar
  62. Limonov AF, Woodside JM, Cita MB, Ivanov MK (1996) The Mediterranean Ridge and related mud diapirism: a background. Mar Geol 132:7–19CrossRefGoogle Scholar
  63. Lykousis V, Alexandri S, Woodside J, de Lange G, Dählmann A, Perissoratis C, Heeschen K, Ioakim C, Sakellariou D, Nomikou P, Rousakis G, Casas D, Ballas D, Ercilla G (2009) Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Mar Petrol Geol 26:854–872CrossRefGoogle Scholar
  64. MacDonald IR, Peccini MB (2009) Distinct activity phases during the recent geologic history of a Gulf of Mexico mud volcano. Mar Petrol Geol 26:1824–1830CrossRefGoogle Scholar
  65. Mastalerz V, de Lange GJ, Dählmann A, Feseker T (2007) Active venting at the Isis mud volcano, offshore Egypt: origin and migration of hydrocarbons. Chem Geol 246:87–106CrossRefGoogle Scholar
  66. Mazurenko LL, Soloviev VA, Gardner JM, Ivanov MK (2003) Gas hydrates in the Ginsburg and Yuma mud volcano sediments (Moroccan Margin): results of chemical and isotopic studies of pore water. Mar Geol 195:201–210CrossRefGoogle Scholar
  67. Mazzini A, Svensen H, Planke S, Guliyev I, Akhmanov GG, Fallik T, Banks D (2009) When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Mar Petrol Geol 26:1704–1715CrossRefGoogle Scholar
  68. MEDINAUT/MEDINETH Shipboard Scientists: Aloisi G, Asjes S, Bakker K, Bakker M, Charlou J-L, de Lange G, Donval J-P, Fiala-Medioni A, Foucher J-P, Haanstra R, Haese R, Heijs S, Henry P, Huguen C, Jelsma B, de Lint S, van der Maarel MJEC, Mascle J, Muzet S, Nobbe G, Pancost RD, Pelle H, Pierre C, Polman W, de Senerpont Domis L, Sibuet M, van Wijk T, Woodside J, Zitter T (2000) Linking Mediterranean brine pools and mud volcanism. EOS AGU Trans 81:625,631–633Google Scholar
  69. Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702CrossRefGoogle Scholar
  70. Milkov AV, Dickens GR, Claypool GE, Lee Y-J, Borowski WS, Torres ME, Xu W, Tomaru H, Tréhu AM, Schultheiss P (2004) Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth Planet Sci Lett 222:829–843CrossRefGoogle Scholar
  71. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858CrossRefGoogle Scholar
  72. Nikolovska A, Sahling H, Bohrmann G (2008) Novel hydro-acoustic methodology for detection, localization and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem Geophys Geosyst 9:Q10010. doi: 10.1029/2008GC002118 CrossRefGoogle Scholar
  73. Olu-Le Roy K, Sibuet M, Fiala-Medioni A, Gofas S, Salas C, Mariotti A, Foucher J-P, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936CrossRefGoogle Scholar
  74. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711CrossRefGoogle Scholar
  75. Østergaard KK, Masoudi R, Tohidi B, Danesh A, Todd AC (2005) A general correlation for predicting the suppression of hydrate dissociation temperature in the presence of thermodynamic inhibitors. J Petrol Sci Eng 48:70–80CrossRefGoogle Scholar
  76. Pancost RD, Sinninghe Damsté JS, De Lint S, Van der Maarel MJEC, Gottschal JC, the Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132CrossRefGoogle Scholar
  77. Pape T, Bahr A, Rethemeyer J, Kessler JD, Sahling H, Hinrichs KU, Klapp SA, Reeburgh WS, Bohrmann G (2010) Molecular and isotopic partitioning of low-molecular weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site. Chem Geol 269:350–363CrossRefGoogle Scholar
  78. Paull CK, Lorenson TD, Dickens G, Borowski WS, Ussler W III, Kvenvolden K (2000) Comparisons of in situ and core gas measurements in ODP Leg 164 bore holes. Ann NY Acad Sci 912:23–31CrossRefGoogle Scholar
  79. Pohlman JW, Canuel EA, Chapman NR, Spence GD, Whiticar MJ, Coffin RB (2005) The origin of thermogenic gas hydrates on the northern Cascadia Margin as inferred from isotopic (13C/12C and D/H) and molecular composition of hydrate and vent gas. Org Geochem 36:703–716CrossRefGoogle Scholar
  80. Praeg D, Unnithan V, Camerlenghi A (2006) Gas hydrate stability in the Mediterranean Sea over glacial-interglacial timescales: results from the HYDRAMED Project. EOS AGU Trans suppl 87, Abstract OS33B-1703Google Scholar
  81. Ripmeester JA, Ratcliffe CI (1988) Low-temperature cross-polarization/magic angle spinning 13C NMR of solid methane hydrates: structure, cage occupancy, and hydration number. J Phys Chem 92:337–339CrossRefGoogle Scholar
  82. Ruppel CD, Dickens GR, Castellini DG, Gilhooly W, Lizarralde D (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys Res Lett 32:L04605. doi: 10.1029/2004GL021909 CrossRefGoogle Scholar
  83. Sahling H, Bohrmann G, Artemov YG, Bahr A, Brüning M, Klapp SA, Klaucke I, Kozlova E, Nikolovska A, Pape T, Reitz A, Wallmann K (2009) Vodyanitskii Mud Volcano, Sorokin Trough, Black Sea: geological characterization and quantification of gas bubble streams. Mar Petrol Geol 26:1799–1811CrossRefGoogle Scholar
  84. Sassen R, Sweet ST, Milkov AV, DeFreitas DA, Kennicutt MC II (2001) Thermogenic vent gas and gas hydrate in the Gulf of Mexico slope: is gas hydrate decomposition significant? Geology 29:107–110CrossRefGoogle Scholar
  85. Sauter EJ, Muyakshin SI, Charlou J-L, Schlüter M, Boetius A, Jerosch K, Damm E, Foucher J-P, Klages M (2006) Methane discharge from a deep sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet Sci Lett 243:354–365CrossRefGoogle Scholar
  86. Schoell M (1988) Multiple origins of methane in the earth. Chem Geol 71:1–10CrossRefGoogle Scholar
  87. Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods 3:361–371CrossRefGoogle Scholar
  88. Seewald JS (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature 426:327–333CrossRefGoogle Scholar
  89. Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases. CRC, Boca RatonCrossRefGoogle Scholar
  90. Soloviev VA, Ginsburg GD (1994) Formation of submarine gas hydrates. Bull Geol Soc Denmark 41:86–94Google Scholar
  91. Stadnitskaia A, Ivanov MK, Poludetkina EN, Kreulen R, van Weering TCE (2008) Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions. Mar Petrol Geol 25:1040–1057CrossRefGoogle Scholar
  92. Subramanian S, Kini RA, Dec SF, Sloan ED (2000) Evidence of structure II hydrate formation from methane + ethane mixtures. Chem Eng Sci 55:1981–1999CrossRefGoogle Scholar
  93. Tishchenko P, Hensen C, Wallmann K, Wong CS (2005) Calculation of the stability and solubility of methane hydrate in seawater. Chem Geol 219:37–52CrossRefGoogle Scholar
  94. Torres ME, Brumsack HJ, Bohrmann G, Emeis KC (1996) Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem Geol 127:125–139CrossRefGoogle Scholar
  95. Werne JP, Haese RR, Zitter T, Aloisi G, Bouloubassi I, Heijs S, Fiala-Médioni A, Pancost RD, Sinninghe Damsté JS, de Lange G, Forney LJ, Gottschal JC, Foucher J-P, Mascle J, Woodside J, the MEDINAUT and MEDINETH shipboard scientific parties (2004) Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea. Chem Geol 205:367–390CrossRefGoogle Scholar
  96. Whiticar MJ (1994) Correlation of natural gases with their sources. In: Magoon LB, Dow WG (eds) The petroleum system - from source to trap. AAPG Memoir 60:261–283Google Scholar
  97. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  98. Woodside JM, Ivanov MK, Limonov AF, shipboard scientists of the Anaxiprobe Expedition (1998) Shallow gas and gas hydrates in the Anaximander Mountains region, eastern Mediterranean Sea. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Lond Spec Publ 137:177–193Google Scholar
  99. Zitter TAC, Woodside JM, Mascle J (2003) The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geol J 38:375–394CrossRefGoogle Scholar
  100. Zitter TAC, Huguen C, Woodside JM (2005) Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep Sea Res I 52:457–475CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Thomas Pape
    • 1
    Email author
  • Sabine Kasten
    • 2
  • Matthias Zabel
    • 1
  • André Bahr
    • 1
    • 3
  • Friedrich Abegg
    • 1
    • 4
  • Hans-Jürgen Hohnberg
    • 1
  • Gerhard Bohrmann
    • 1
  1. 1.MARUM—Center for Marine Environmental Sciences and Department of GeosciencesUniversity of BremenBremenGermany
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  3. 3.Institute of GeosciencesJohann Wolfgang Goethe-UniversityFrankfurt am MainGermany
  4. 4.IFM-GEOMAR Leibniz Institute of Marine SciencesKielGermany

Personalised recommendations