Geo-Marine Letters

, Volume 30, Issue 3–4, pp 157–167 | Cite as

Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006

  • Jean-Paul FoucherEmail author
  • Stéphanie Dupré
  • Carla Scalabrin
  • Tomas Feseker
  • François Harmegnies
  • Hervé Nouzé


The Håkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage.


Flare High Backscatter Fluid Flow Regime Entire Crater Hummocky Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Vicking cruise (2006) of the R/V Pourquoi pas? using the Victor ROV was carried out in the frame of the HERMES Project funded by the European Commission’s Framework Sixth Programme, under the priority Sustainable Development, Global Change and Ecosystems, EC Contract No. GOCE-CT-2005-511234. We acknowledge the efficient assistance of the Master and Crew of the R/V Pourquoi pas? and of the Victor ROV team during the Vicking cruise. We thank Ifremer colleagues Alain Normand for processing the multibeam data, and Catherine Satra and Marie-Claire Fabri for their help in the development and use of the GIS. We are grateful to Doug Masson and George Delisle for helpful reviews.


  1. Aliyev AA, Guliyev IS, Belov IS (2002) Catalogue of recorded eruptions of mud volcanoes in Azerbaijan (for period of years 1810–2001). Nafta Press, BakuGoogle Scholar
  2. Berger L, Durand C, Marchalot C (2007) Movies + User Manual version 4.4. Ifremer, ParisGoogle Scholar
  3. de Beer D, Sauter E, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnol Oceanogr 51:1315–1331CrossRefGoogle Scholar
  4. Delisle G, von Rad U, Andruleit H, Von Daniels CH, Tabrez AR, Inam A (2002) Active mud volcanoes on- and offshore eastern Makran, Pakistan. Int J Earth Sci 91:93–110CrossRefGoogle Scholar
  5. Deville E, Guerlais SH (2009) Cyclic activity of mud volcanoes: evidences from Trinidad (SE Caribbean). Mar Petrol Geol 26:1681–1691CrossRefGoogle Scholar
  6. Dimitrov LI (2002) Mud volcanoes - the most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76CrossRefGoogle Scholar
  7. Edy C, Bisquay H, Foucher J-P, Opderbecke J, Simeoni P, Allais A-G, Beyer A, Jerosch K, Rathlau R (2004) Microbathymetry of the Håkon Mosby mud volcano off northern Norway: results of a ROV-borne multibeam survey. Geophys Res Abstr 6:4619Google Scholar
  8. Etiope G, Milkov AV (2004) A next estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46:997–1002CrossRefGoogle Scholar
  9. Feseker T, Foucher J-P, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247:194–207CrossRefGoogle Scholar
  10. Feseker T, Dählmann A, Foucher J-P, Harmegnies F (2009) In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea. Mar Geol 261:128–137CrossRefGoogle Scholar
  11. Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structure and drivers of hydrocarbon seep ecosystems in the European seas: an overview from HERMES results. Oceanography 22:92–109CrossRefGoogle Scholar
  12. Greinert J, Nützel B (2004) Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo-Mar Lett 24(2):75–85. doi: 10.1007/s00367-003-0165-7 CrossRefGoogle Scholar
  13. Herbin JP, Saint-Germès M, Maslakov N, Shnyukov EF, Vially R (2008) Oil seeps from the “Boulganack” mud volcano in the Hertch Peninsula (Ukraine-Crimea). Study of the mud and the gas; inferences for the petroleum potential. Oil Gas Sci Technol, Revue IFP 63:609–628CrossRefGoogle Scholar
  14. Hjelstuen BO, Eldholm O, Faleide JI, Vogt PR (1999) Regional setting of Håkon Mosby Mud Volcano, SW Barents Sea margin. Geo-Mar Lett 19(1/2):22–28. doi: 10.1007/s003670050089 CrossRefGoogle Scholar
  15. Jakobsson M, Macnab R, Mayer L, Anderson R, Edwards M, Hatzky JR, Schenke HW, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35:L07602. doi: 10.1029/2008GL033520 CrossRefGoogle Scholar
  16. Jerosch K, Schlüter M, Foucher J-P, Allais A-G, Klages M, Edy C (2007) Spatial distribution of mud flows, chemoautotrophic communities, and biogeochemical habitats at Håkon Mosby Mud Volcano. Mar Geol 243:1–17CrossRefGoogle Scholar
  17. Judd AG, Hovland M (2007) Seabed fluid flow. The impact on geology, biology and the marine environment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Kaul N, Foucher J-P, Heesemann M (2006) Estimating mud expulsion rates from temperature measurements on Håkon Mosby Mud Volcano, SW Barents Sea. Mar Geol 229:1–14CrossRefGoogle Scholar
  19. Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40(2):1005. doi: 10.1029/2000RG000093 CrossRefGoogle Scholar
  20. Mazzini A, Svensen H, Akhmanov GG, Aloisi G, Planke S, Malthe-Sørenssen A, Istadi B (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet Sci Lett 261:375–388CrossRefGoogle Scholar
  21. Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42CrossRefGoogle Scholar
  22. Milkov A, Vogt P, Cherkashev G, Ginsburg G, Chernova N, Andriashev A (1999) Sea-floor terrains of Håkon Mosby Mud Volcano as surveyed by deep-tow video and still photography. Geo-Mar Lett 19(1/2):38–47. doi: 10.1007/s003670050091 CrossRefGoogle Scholar
  23. Milkov AV, Vogt PR, Crane K, Lein AY, Sassen R, Cherkashev GA (2004) Geological, geochemical, and microbial processes at the hydrate-bearing Håkon Mosby mud volcano: a review. Chem Geol 205:347–366CrossRefGoogle Scholar
  24. Perez-Garcia C, Feseker T, Mienert J, Berndt C (2009) The Håkon Mosby mud volcano: 330 000 years of focused fluid flow activity at the SW Barents Sea slope. Mar Geol 262:105–115CrossRefGoogle Scholar
  25. Rehder G, Brewer PW, Peltzer ET, Friederich G (2002) Enhanced lifetime of methane bubble streams within the deep ocean. Geophys Res Lett 29:1731. doi: 10.1029/2001GL013966 CrossRefGoogle Scholar
  26. Sauter EJ, Muyakshin SI, Charlou J-L, Schlüter M, Boetius A, Jerosch K, Damm E, Foucher J-P, Klages M (2006) Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet Sci Lett 243:354–365CrossRefGoogle Scholar
  27. Stanton TK (1989) Simple approximate formulas for backscattering of sound by spherical and elongated objects. J Acoust Soc Am 86:1499–1510CrossRefGoogle Scholar
  28. Vanreusel A, Andersen AC, Boetius A, Connelly D, Cunha MR, Decker C, Hilario A, Kormas KA, Maignien L, Olu K, Pachiadaki M, Ritt B, Rodrigues C, Sarrazin J, Tyler P, Van Gaever S, Vanneste H (2009) Biodiversity of cold seep ecosystems along the European margins. Oceanography 22:110–127CrossRefGoogle Scholar
  29. Vogt PR, Gardner J, Crane K (1999) The Norwegian-Barents-Svalbard (NBS) continental margin: introducing a natural laboratory of mass wasting, hydrates and ascent of sediment, pore water, and methane. Geo-Mar Lett 19(1/2):2–21. doi: 10.1007/s003670050088 CrossRefGoogle Scholar
  30. Weill A, Scalabrin C, Diner N (1993) MOVIES-B: an acoustic detection description software. Application to shoal species classification. Aquat Living Resour 6:255–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jean-Paul Foucher
    • 1
    Email author
  • Stéphanie Dupré
    • 2
  • Carla Scalabrin
    • 1
  • Tomas Feseker
    • 3
  • François Harmegnies
    • 1
  • Hervé Nouzé
    • 1
  1. 1.Ifremer, Centre de BrestPlouzanéFrance
  2. 2.LOCEANUniversité Pierre et Marie CurieParisFrance
  3. 3.IFM-GEOMARLeibniz Institute of Marine Sciences at Kiel UniversityKielGermany

Personalised recommendations