Advertisement

Geo-Marine Letters

, Volume 30, Issue 3–4, pp 427–437 | Cite as

Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

  • Alexey A. Krylov
  • Oleg M. Khlystov
  • Akihiro Hachikubo
  • Hirotsugu Minami
  • Yutaka Nunokawa
  • Hitoshi Shoji
  • Tamara I. Zemskaya
  • Lieven Naudts
  • Tatyana V. Pogodaeva
  • Masato Kida
  • Gennady V. Kalmychkov
  • Jeffrey Poort
Original

Abstract

We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between −9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.

Keywords

Isotopic Composition Dissolve Inorganic Carbon Siderite Southern Basin Methane Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We appreciate the assistance of the shipboard crews of G.Yu. Vereshchagin during our expeditions to Lake Baikal. The CF-IRMS measurements were supported by T. Kosaka and T. Ozeki. We would like to acknowledge T. Abe, S. Kataoka, S. Nishio, H. Tomaru, S. Yamashita, and T. Yokoyama for their considerable help during field operations. Discussion with Dr. Tatyana Matveeva and Dr. Elizaveta Logvina was very helpful. The reviews of two anonymous reviewers helped improve the manuscript. This work was supported by the Japan Society for the Promotion of Science KAKENHI 17550069, 18206099 and 19550077, by the Japan Ministry of Education, Culture, Sports, Science and Technology KAKENHI 19740323, and by the Integration projects of RAS SB No 27 and 58.

References

  1. Alperin MJ, Blair NE, Albert DB, Hoehler TM, Martens CS (1992) Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. Global Biogeochem Cycles 6:271–291CrossRefGoogle Scholar
  2. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187. doi: 10.1126/science.1169984 CrossRefGoogle Scholar
  3. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  4. Callender E, Granina L (1992) Transition metal geochemistry of sedimentary pore fluids associated with hydrothermal activity in Lake Baikal, Russia. In: Kharaka YK, Maest AS (eds) Proc 7th Int Symp Water-Rock Interaction WRI-7, 13–18 July 1992, Park City, UT. Balkema, Rotterdam, pp 621–626Google Scholar
  5. Drilling Project Group (2000) Paleoclimatic record in the Late Cenozoic sediments of Lake Baikal (by 600 m deep-drilling data). Russian Geol Geophys 41(1):3–32Google Scholar
  6. Granina LZ (2008) Early diagenesis of bottom sediments in Lake Baikal. In Mizandrontsev IB (ed) Academic Publishing House “Geo”, NovosibirskGoogle Scholar
  7. Granina LZ, Callender E, Lomonosov IS, Mats VD, Golobokova LP (2001) Anomalous composition of the pore water from the Baikal bottom sediments. Russian Geol Geophys 42:351–361Google Scholar
  8. Granina L, Muller B, Wehrli B (2004) Origin and dynamics of the Fe- and Mn-sedimentary layers in Lake Baikal. Chem Geol 205:55–72CrossRefGoogle Scholar
  9. Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Paull CK, Dillon WP (eds) Natural gas hydrates—occurrence, distribution, and detection. AGU Geophys Monogr Ser 124:99–113Google Scholar
  10. Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrate in Lake Baikal based on isotopic data. Geophys Res Lett 36:L18504. doi: 10.1029/2009GL039805 CrossRefGoogle Scholar
  11. Hachikubo A, Khlystov O, Krylov A, Sakagami H, Minami H, Nunokawa Y, Yamashita S, Takahashi N, Shoji H, Nishio S, Kida M, Ebinuma T, Kalmychkov G, Poort J (2010) Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in the southern and central Lake Baikal. In: Bohrmann G, Jørgensen BB (eds) Proc 9th Int Conf Gas in Marine Sediments, 15–19 September 2008, Bremen. Geo-Mar Lett SI 30 (in press)CrossRefGoogle Scholar
  12. Hornibrook ERC, Longstaffe FJ, Fyfe WS (1997) Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochim Cosmochim Acta 61:745–753CrossRefGoogle Scholar
  13. Kalmychkov GV, Egorov AV, Kuz’min MI, Khlystov OM (2006) Genetic types of methane from Lake Baikal. Doklady Earth Sci 411:1462–1465CrossRefGoogle Scholar
  14. Khlystov O (2006) New findings of gas hydrates in the Baikal bottom sediments. Russian Geol Geophys 47:973Google Scholar
  15. Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamashita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33:L24603. doi: 10.1029/2006GL028296 CrossRefGoogle Scholar
  16. Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Grachev MA, Namsaraev BB, Dagurova OP, Golobokova LP, Vorobyova SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solovyov VA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Doklady Earth Sci 393A(9):1342–1346Google Scholar
  17. Knyazeva LM (1954) Vivianite in bottom muds of Lake Baikal (in Russian). Doklady Akad Nauk USSR 97:519–522Google Scholar
  18. Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Kida M, Shoji H, Naudts L, Poort J, Pogodaeva T (2008a) First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, Eastern Siberia. Geophys Res Lett 35:L05405. doi: 10.1029/2007GL032917 CrossRefGoogle Scholar
  19. Krylov AA, Khlystov OM, Zemskaya TI, Minami H, Hachikubo A, Shoji H, Kida M, Pogodaeva TV, Naudts L, Poort J (2008b) Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal. Geochem Int 46(10):985–995CrossRefGoogle Scholar
  20. Kuzmin MI, Kalmychkov GV, Geletyi VA, Gnilusha VA, Goreglyad AV, Khakhaev BN, Pevzner LA, Kawai T, Yoshida N, Duchkov AD, Ponomarchuk VA, Kontorovich AE, Bazhin NM, Makhov GA, Dyadin YA, Kuznetsov FA, Larionov EG, Manakov AY, Smolyakov BS, Mandelbaum MM, Zheleznyakov NK (1998) The first find of gas-hydrates in the sedimentary rocks of Lake Baikal. Doklady Earth Sci 362(7):1029–1031Google Scholar
  21. Lein AY (2004) Authigenic carbonate formation in the ocean. Lithol Mineral Resources 39(1):1–30CrossRefGoogle Scholar
  22. Martin JB, Kastner M, Henry P, Le Pichon X, Lallement S (1996) Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. J Geophys Res 101(B9):20325–20345CrossRefGoogle Scholar
  23. Matsumoto R (1989) Isotopically heavy oxygen-containing siderite derived from the decomposition of methane hydrate. Geology 17:707–710CrossRefGoogle Scholar
  24. Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). In: Woodside JM, Garrison RE, Moore JC, Kvenvolden KA (eds) Proc 7th Int Conf Gas in Marine Sediments, 7–1 October 2002, Baku, Azerbaijan. Geo-Mar Lett SI 23(3/4):289–299. doi: 10.1007/s00367-003-0144-z CrossRefGoogle Scholar
  25. Mizandrontsev IB (1975) About geochemistry of the pore solutions (in Russian). In: Dynamic of the Baikal Depression. Nauka, Siberian Branch, Novosibirsk, pp 203–231Google Scholar
  26. Namsaraev BB, Zemskaya TI (2000) Microbial processes of carbon circulation in bottom sediments of Lake Baikal (in Russian). RAS, Siberian Branch, NovosibirskGoogle Scholar
  27. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by direct coupled isotopic and phylogenic analysis. Science 293:484–487CrossRefGoogle Scholar
  28. Paull CK, Lorenson TD, Borowski WS, Ussler W III, Olsen K, Rodriguez NM (2000) Isotopic composition of CH4, CO2 species, and sedimentary organic matter within samples from the Blake Ridge: gas source implications. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP, College Station, TX, Sci Results 164:67–78Google Scholar
  29. Pogodaeva TV, Zemskaya TI, Golobokova LP, Khlystov OM, Minami H, Sakagami H (2007) Chemical composition of pore waters of bottom sediments in different Baikal basins. Russian Geol Geophys 48:886–900CrossRefGoogle Scholar
  30. Prokopenko AA, Williams DF (2005) Depleted methane-derived carbon in waters of Lake Baikal, Siberia. Hydrobiologia 544:279–288CrossRefGoogle Scholar
  31. Rosenfeld WD, Silverman SR (1959) Carbon isotope fractionation in bacterial production of methane. Science 130:1658–1659CrossRefGoogle Scholar
  32. Sapota T, Aldahan A, Al-Aasm IS (2006) Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J Paleolimnol 36:245–257CrossRefGoogle Scholar
  33. Sugimoto A, Wada E (1995) Hydrogen isotopic composition of bacterial methane: CO2/H reduction and acetate fermentation. Geochim Cosmochim Acta 59:1329–1337CrossRefGoogle Scholar
  34. Torres ME, Mix AC, Rugh WD (2005) Precise δ13C analysis of dissolved inorganic carbon in natural water using automated headspace sampling and continuous-flow mass spectrometry. Limnol Oceanogr Methods 3:349–360CrossRefGoogle Scholar
  35. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484CrossRefGoogle Scholar
  36. Vanneste M, De Batist M, Golmshtok A, Kremlev A, Versteeg W (2001) Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia. Mar Geol 172:1–21CrossRefGoogle Scholar
  37. van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30(7):631–634CrossRefGoogle Scholar
  38. von Rad U, Rösch H, Berner H, Geyh M, Marchig V, Schulz H (1996) Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Mar Geol 136(1/2):55–77Google Scholar
  39. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  40. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem 10:759–768CrossRefGoogle Scholar
  41. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50:693–709CrossRefGoogle Scholar
  42. Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alexey A. Krylov
    • 1
  • Oleg M. Khlystov
    • 2
  • Akihiro Hachikubo
    • 3
  • Hirotsugu Minami
    • 3
  • Yutaka Nunokawa
    • 3
  • Hitoshi Shoji
    • 3
  • Tamara I. Zemskaya
    • 2
  • Lieven Naudts
    • 4
  • Tatyana V. Pogodaeva
    • 2
  • Masato Kida
    • 5
  • Gennady V. Kalmychkov
    • 6
  • Jeffrey Poort
    • 4
    • 7
  1. 1.I.S. Gramberg All-Russia Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)St. PetersburgRussia
  2. 2.Limnological Institute, Siberian Branch of Russian Academy of ScienceIrkutskRussia
  3. 3.Kitami Institute of TechnologyKitamiJapan
  4. 4.Renard Centre of Marine GeologyGhent UniversityGhentBelgium
  5. 5.National Institute of Advanced Industrial Science and TechnologySapporoJapan
  6. 6.A.P. Vinogradov Institute of GeochemistrySiberian Branch of Russian Academy of ScienceIrkutskRussia
  7. 7.Laboratoire de Géosciences MarinesInstitut de Physique du Globe de ParisParisFrance

Personalised recommendations