Advertisement

Geo-Marine Letters

, Volume 30, Issue 1, pp 23–34 | Cite as

Influence of food supply on the δ13C signature of mollusc shells: implications for palaeoenvironmental reconstitutions

  • Franck LartaudEmail author
  • Laurent Emmanuel
  • Marc de Rafelis
  • Stephane Pouvreau
  • Maurice Renard
Original

Abstract

Compared to oxygen isotopes, the carbon isotope composition of biogenic carbonates is less commonly used as proxy for palaeoenvironmental reconstructions because shell δ13C is derived from both dissolved inorganic (seawater) and organic carbon sources (food), and interactions between these two pools make it difficult to unambiguously identify any independent effect of either. The main purpose of this study was to demonstrate any direct impact of variable food supply on bivalve shell δ13C signatures, using low/high rations of a 13C-light mixed algal diet fed to 14-month-old (adult) cultured Japanese Crassostrea gigas under otherwise essentially identical in vitro conditions during 3 summer months (May, June and July 2003, seawater temperature means at 16, 18 and 20 °C respectively) in experimental tanks at the Argenton laboratory along the Brittany Atlantic coast of France. At a daily ration of 12% (versus 4%) oyster dry weight, the newly grown part of the shells (hinge region) showed significantly lower δ13C values, by 3.5‰ (high ration: mean of −5.8  ± 1.1‰, n = 10; low ration: mean of −2.3  ± 0.7‰, n = 6; ANOVA Scheffe’s test, p < 0.0001). This can be explained by an enhanced metabolic activity at higher food supply, raising 13C-depleted respiratory CO2 in the extrapallial cavity. Based on these δ13C values and data extracted from the literature, and assuming no carbon isotope fractionation between food and shell, the proportion of shell metabolic carbon would be 26  ± 7 and 5  ± 5% for the high- and low-ration C. gigas shells respectively; with carbon isotope fractionation (arguably more realistic), the corresponding values would be 69  ± 14 and 24  ± 9%. Both groups of cultured shells exhibited lower δ13C values than did wild oysters from Marennes-Ol éron Bay in the study region, which is not inconsistent with an independent influence of diet type. Although there was no significant difference between the two food regimes in terms of δ18O shell values (means of 0.1  ± 0.3 and 0.4  ± 0.2‰ at high and low rations respectively, non-significant Scheffe’s test), a positive δ13C vs. δ18O relationship recorded at high rations supports the interpretation of a progressive temperature-mediated rise in metabolic activity fuelled by higher food supply (in this case reflecting increased energy investment in reproduction), in terms not only of δ13C (metabolic signal) but also of δ18O (seawater temperature signal). Overall, whole-shell δ18O trends faithfully recorded summer/winter variations in seawater temperature experienced by the 17-month-old cultured oysters.

Keywords

Carbon Isotope Oxygen Isotope Dissolve Inorganic Carbon Seawater Temperature Oyster Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

367_2009_148_MOESM1_ESM.doc (48 kb)
Table 3 Isotopic composition of cultured, 17-month-old C. gigas shells after an initial summer rearing period in the Bouin station (March–September 2002), followed by a winter growth period in the Marennes ponds (October 2002–April 2003), and then a summer growth period with either low (CN1) or high (CN3) foods rations in the Argenton experimental tanks (May–July 2003; cf. Fig. 3)a (DOC 48 kb)
367_2009_148_MOESM2_ESM.pdf (760 kb)
Supplementary material, approximately 759 KB.

References

  1. Andrus CFT, Crowe DE (2000) Geochemical analysis of Crassostrea virginica as a method to determine season of capture. J Archaeol Sci 27:33–42CrossRefGoogle Scholar
  2. Arthur MA, Williams DF, Jones DS (1983) Seasonal temperature-salinity changes and thermocline in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology 11:655–659CrossRefGoogle Scholar
  3. Aucour AM, Sheppard SMF, Savoye R (2003) δ13C of fluvial mollusk shells (Rh ône River): a proxy for dissolved inorganic carbon? Limnol Oceanogr 48:2186–2193CrossRefGoogle Scholar
  4. Audemard C, Sajus MC, Barnaud A, Sautour B, Sauriau PG, Berthe FJC (2004) Infection dynamics of Marteilia refrigens in flat oyster Ostrea edulis and copepod Paracartia grani in a claire pond of Marennes-Ol éron Bay. Dis Aquat Org 61:103–111CrossRefGoogle Scholar
  5. Balakrishnan M, Yapp CJ (2004) Flux balance models for the oxygen and carbon isotope compositions of land snails shells. Geochim Cosmochim Acta 68:2007–2024CrossRefGoogle Scholar
  6. Baldwin BS, Newell RIE (1995) Feeding rate responses of oyster larvae (Crassostrea virginica) to seston quantity and composition. J Exp Mar Biol Ecol 189:77–91CrossRefGoogle Scholar
  7. Barbin V, Ramseyer K, Elfman M (2008) Biological record of added manganese in seawater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas. Int J Earth Sci 97:193–199CrossRefGoogle Scholar
  8. Bayne BL, Svensson S (2006) Seasonal variability in feeding behaviour, metabolic rates and carbon and nitrogen balances in the Sydney oyster, Saccostrea glomerata (Gould). J Exp Mar Biol Ecol 332:12–26CrossRefGoogle Scholar
  9. Berger WH, Killingley JS, Vincent E (1978) Stable isotopes in deep-sea carbonates: box core ERDC-92, West Equatorial Pacific. Oceanol Acta 1:203–216Google Scholar
  10. Botello AV, Mandelli EF, Macko S, Parker PL (1980) Organic carbon isotope ratios of recent sediments from coastal lagoons of the Gulf of Mexico, Mexico. Geochim Cosmochim Acta 44:557–559CrossRefGoogle Scholar
  11. Chavez-Villalba J, Barret J, Mingant C, Cochard JC, Le Pennec M (2002) Autumn conditioning of the oyster Crassostrea gigas: a new approach. Aquaculture 210:171–186CrossRefGoogle Scholar
  12. De Niro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  13. Delaporte M (2005) Modulation des param ètres h émocytaires par la nutrition chez l’hu ître creuse Crassostrea gigas. Implication dans les mortalit és estivales. PhD Thesis, Universit é Rennes 1Google Scholar
  14. Delaporte M, Soudant P, Lambert C, Moal J, Pouvreau S, Samain JF (2006) Impact of food availability on energy storage and defense related hemocyte parameters of the Pacific oyster Crassostrea gigas during an experimental reproductive cycle. Aquaculture 254:571–582CrossRefGoogle Scholar
  15. Deslous-Paoli JM, H éral M (1988) Biochemical composition and energy value of Crassostrea gigas (Thunberg) cultured in the bay of Marennes-Ol éron. Aquat Living Resour 1:239–249CrossRefGoogle Scholar
  16. Dettman DL, Reische AK, Lohmann KC (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochim Cosmochim Acta 63(7/8):1049–1057CrossRefGoogle Scholar
  17. Dettman DL, Flessa KW, Roopnarine PD, Sch öne BR, Goodwin DH (2004) The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge. Geochim Cosmochim Acta 68:1253–1263CrossRefGoogle Scholar
  18. Duplessy JC, Blank PL, B é AWH (1981) Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213:1247–1250CrossRefGoogle Scholar
  19. Emiliani C, Hudson JH, Shinn EA, George RY (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202:627–629CrossRefGoogle Scholar
  20. Enriquez-Diaz MR (2004) Variabilit é et bio énerg étique de la reproduction chez l’hu ître creuse Crassostrea gigas. PhD Thesis, Universit é Bretagne OccidentaleGoogle Scholar
  21. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  22. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  23. Geist J, Auerswald K, Boom A (2005) Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity? Geochim Cosmochim Acta 69:3545–3554CrossRefGoogle Scholar
  24. Geist J, Auerswald K, Boom A (2006) Response to the comment by B. Sch öne et al. (2006) on “Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity?”. Geochim Cosmochim Acta 70:2662–2664CrossRefGoogle Scholar
  25. Gillikin DP, Bouillon S (2007) Determination of δ18O of water and δ13C of dissolved inorganic carbon using a simple modification of an elemental analyzer-isotope ratio mass spectrometer (EA-IRMS): an evaluation. Rapid Commun Mass Spectrom 21:1475–1478CrossRefGoogle Scholar
  26. Gillikin DP, De Ridder F, Ulens H, Elskens M, Keppens E, Baeyens W, Dehairs F (2005) Assessing the reproducibility and reliability of estuarine bivalve shells (Saximodus giganteus) for sea surface temperature reconstruction: implication for paleoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 228:70–85CrossRefGoogle Scholar
  27. Gillikin DP, Lorrain A, Bouillon S, Willenz P, Dehairs F (2006) Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13C DIC and phytoplankton. Org Geochem 37:1371–1382CrossRefGoogle Scholar
  28. Gillikin DP, Lorrain A, Meng L, Dehairs F (2007) A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochim Cosmochim Acta 71:2936–2946CrossRefGoogle Scholar
  29. Gillikin DP, Hutchinson KA, Kumai Y (2009) Ontogenic increase in metabolic carbon in freshwater mussel shells (Pyganodon cataracta). J Geophys Res 114:G01007. doi: 10.1029/2008JG000829 CrossRefGoogle Scholar
  30. Goodfriend GA, Hood DG (1983) Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25:810–830Google Scholar
  31. Goodwin DH, Sch öne BR, Dettman DL (2003) Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110–125CrossRefGoogle Scholar
  32. Goulletquer P, H éral M (1997) Marine molluscan production trends in France: from fisheries to aquaculture. NOAA Tech Rep NMFS 129:137–164Google Scholar
  33. Hellings L, Van Den Driessche K, Baeyens W, Keppens E, Dehairs F (2000) Origin and fate of dissolved inorganic carbon in interstitial waters of two freshwater intertidal areas: a case study of the Scheldt Estuary, Belgium. Biogeochemistry 51:141–160CrossRefGoogle Scholar
  34. Hellings L, Dehairs F, Van Damme S, Baeyens W (2001) Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnol Oceanogr 46:1406–1414CrossRefGoogle Scholar
  35. Hussenot J, Buchet V (1998) Marais maritimes et aquaculture. Activit és durables pour la pr éservation et l’exploitation des zones humides littorales. Quae, VersaillesGoogle Scholar
  36. Ivany CL, Wilkinson BH, Jones DS (2003) Using stable isotopic data to resolve rate and duration of growth throughout ontogeny: an example from the surf clam, Spisula solidissima. Palaios 18:126–137CrossRefGoogle Scholar
  37. Jones DS, Arthur MA, Allards DJ (1989) Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Mar Biol 102:225–234CrossRefGoogle Scholar
  38. Khim BK, Woo KS, Je JG (2000) Stable isotope profiles of bivalve shells: seasonal temperature variations, latitudinal temperature gradients and biological carbon cycling along the east coast of Korea. Cont Shelf Res 20:843–861CrossRefGoogle Scholar
  39. Killingley JS, Berger WH (1979) Stable isotopes in a mollusk shell: detection of upwelling events. Science 205(13):186–188CrossRefGoogle Scholar
  40. Kirby MX, Soniat TM, Spero HJ (1998) Stable isotope sclerochronology of Pleistocene and Recent oyster shells (Crassostrea virginica). Palaios 13:560–569CrossRefGoogle Scholar
  41. Klein RT, Lohmann KC, Thayer CW (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochim Cosmochim Acta 60(21):4207–4221CrossRefGoogle Scholar
  42. Krantz DE, Williams DF, Jones DS (1987) Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeogr Palaeoclimatol Palaeoecol 58:249–266CrossRefGoogle Scholar
  43. Langlet D (2002) Enregistrement haute fr équence des conditions environnementales par les tests de bivalves. Application des techniques de marquage, cathodoluminescence, et chimie à l’hu ître Crassostrea gigas de l’ étang de Thau (H érault, France). PhD Thesis, UPMC Paris 06Google Scholar
  44. Langlet D, Alunno-Bruscia M, Raf élis M, Renard M, Roux M, Schein E, Buestel D (2006) Experimental and natural manganese-induced cathodoluminescence in the shell of the Japanese oyster Crassostrea gigas (Thunberg, 1793) from Thau Lagoon (H érault, France): ecological and environmental implications. Mar Ecol Prog Ser 317:143–156CrossRefGoogle Scholar
  45. Lartaud F (2007) Les fluctuations haute fr équence de l’environnement au cours des temps g éologiques. Mise au point d’un mod èle de r éf érence actuel sur l’enregistrement des contrastes saisonniers dans l’Atlantique nord. PhD Thesis, UPMC Paris 06Google Scholar
  46. Lartaud F, Langlet D, De Rafelis M, Emmanuel L, Renard M (2006) Description of seasonal rythmicity in fossil oyster shells Crassostrea aginensis, Tournouer, 1914 (Aquitanian) and Ostrea bellovacina, Lamarck, 1806 (Thanetian). Cathodoluminescence and sclerochronological approaches. Geobios 39:845–852CrossRefGoogle Scholar
  47. Latal C, Piller WE, Harzhauser M (2006) Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/Middle Miocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 231:347–360CrossRefGoogle Scholar
  48. Lietard C, Pierre C (2008) High-resolution isotopic records (δ18O and δ13C) and cathodoluminescence study of lucinid shells from methane seeps of the Eastern Mediterranean. In: Gr öcke DR, Gillikin DP (eds) Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment.Google Scholar
  49. Geo-Mar Lett SI 28(5/6):195–203. doi: 10.1007/s00367-008-0100-z CrossRefGoogle Scholar
  50. Lorrain A, Paulet YM, Chauvaud L, Dunbar R, Mucciarone D, Fontugne M (2004) δ13C variation in scallop shells: increasing metabolic carbon contribution with body size? Geochim Cosmochim Acta 68(17):3509–3519CrossRefGoogle Scholar
  51. Malet N (2005) Ecologie alimentaire de l’hu ître Crassostrea gigas: dynamiques des compositions isotopiques naturelles. PhD Thesis, Universit é La RochelleGoogle Scholar
  52. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  53. McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. In: Gröcke DR, Gillikin DP (eds) Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment.Google Scholar
  54. Geo-Mar Lett SI 28(5/6):287–299. doi: 10.1007/s00367-008-0116-4 CrossRefGoogle Scholar
  55. McConnaughey T, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61(3):611–622CrossRefGoogle Scholar
  56. McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 99–118Google Scholar
  57. Metref S, Rousseau DD, Bentaleb I, Labonne M, Vianey-Liaud M (2003) Study of the diet effect on δ13C of shell carbonate of the land snail Helix aspersa in experimental conditions. Earth Planet Sci Lett 211:381–393CrossRefGoogle Scholar
  58. Mitchell L, Fallick AE, Curry GB (1994) Stable carbon and oxygen isotope compositions of mollusc shells from Britain and New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 111:207–216CrossRefGoogle Scholar
  59. Paulet YM, Lorrain A, Richard J, Pouvreau S (2006) Experimental shift in diet δ13C: a potential tool for ecophysiological studies in marine bivalves. Org Geochem 37:1359–1370CrossRefGoogle Scholar
  60. Pierre C (1999) The oxygen and carbon isotope distribution in the Mediterranean water masses. Mar Geol 153:41–55CrossRefGoogle Scholar
  61. Pirastru L (1994) The Bay of Bourgneuf underground salt water: physicochemical characteristics, bioavailability of phosphates and potential fertility for Skeletonema costatum (Grev.) Cleve. PhD Thesis, Universit é NantesGoogle Scholar
  62. Riera P, Richard P (1996) Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine Bay of Marennes-Oleron. Estuar Coast Shelf Sci 42:347–360CrossRefGoogle Scholar
  63. Robert R, G érard A (1999) Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquat Living Resour 12:121–130CrossRefGoogle Scholar
  64. Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430CrossRefGoogle Scholar
  65. Salomons W, Mook WG (1986) Isotope geochemistry of carbonates in the weathering zone. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 2. Elsevier, Amsterdam, pp 239–270Google Scholar
  66. Schöne BR (2008) The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. In: Gröcke DR, Gillikin DP (eds) Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment.Google Scholar
  67. Geo-Mar Lett SI 28(5/6):269–285. doi: 10.1007/s00367-008-0114-6 CrossRefGoogle Scholar
  68. Sch öne BR, Tanabe K, Dettman DL, Sato S (2003) Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar Biol 142:473–485Google Scholar
  69. Sch öne BR, Freyre Castro AD, Friebig J, Houk SD, Oschmann W, Kr öncke I (2004) Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr Palaeoclimatol Palaeoecol 212:215–232Google Scholar
  70. Sch öne BR, Rodland DL, Surge DM, Fiebig J, Gillikin DP, Baier SM, Goewert A (2006) Comment on “Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity?” by J. Geist et al. (2005). Geochim Cosmochim Acta 70:2658–2661CrossRefGoogle Scholar
  71. Stott LD (2002) The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa. Earth Planet Sci Lett 195:249–259CrossRefGoogle Scholar
  72. Struski C (2005) Mod élisation des flux de mati ères dans la baie de Marennes-Ol éron: couplage de l’hydrodynamisme, de la production primaire et de la consommation par les hu îtres. PhD Thesis, Universit é La RochelleGoogle Scholar
  73. Surge D, Lohmann KC, Dettman DL (2001) Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeogr Palaeoclimatol Palaeoecol 172:283–296CrossRefGoogle Scholar
  74. Surge DM, Lohmann KC, Goodfriend GA (2003) Reconstructing estuarine conditions: oyster shells as recorders of environmental change, Southwest Florida. Estuar Coastal Shelf Sci 57:737–756CrossRefGoogle Scholar
  75. Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320:520–523CrossRefGoogle Scholar
  76. Turner JV (1982) Kinetic fractionation of δ13C during calcium carbonate precipitation. Geochim Cosmochim Acta 46:1183–1191CrossRefGoogle Scholar
  77. Utting SD, Millican PF (1997) Techniques for the hatchery conditioning of bivalve broodstocks and the subsequent effect on egg quality and larval viability. Aquaculture 155:47–56CrossRefGoogle Scholar
  78. Vander Putten E, Dehairs F, Keppens E, Baeyens W (2000) High resolution distribution of trace elements in the calcite shell layers of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64(6):997–1011CrossRefGoogle Scholar
  79. Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Franck Lartaud
    • 1
    • 3
    Email author
  • Laurent Emmanuel
    • 1
  • Marc de Rafelis
    • 1
  • Stephane Pouvreau
    • 2
  • Maurice Renard
    • 1
  1. 1.UPMC Univ. Paris 06Lab. Biomin éralisations et Environnements S édimentaire, ISTeP- UMR 7193Paris cedex 05France
  2. 2.Ifremer, D épartement de Physiologie Fonctionnelle des Organismes MarinsStation Exp érimentale d’ArgentonArgentonFrance
  3. 3.LEMAR, UMR CNRS 6539Institut Univ. Europ éen de la MerPlouzan éFrance

Personalised recommendations