Geo-Marine Letters

, Volume 23, Issue 1, pp 34–42 | Cite as

Paleoenvironment and sea-level change in the early Cretaceous Barents Sea—implications from near-shore marine sapropels

  • Uwe LangrockEmail author
  • Ruediger Stein
  • Marcus Lipinski
  • Hans-Jürgen Brumsack


The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.


Total Organic Carbon Kerogen Black Shale Vitrinite Hydrogen Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support by the German Science Foundation (grant STE 412-13/1) is gratefully acknowledged. Sintef Petroleum Research, Norway, kindly provided access to sensitive core material and unpublished data. We thank Dr. Tom Wagner and two anonymous reviewers for their critical comments to improve the manuscript.


  1. Århus N, Kelly SRA, Collins JSH, Sandy MR (1990) Systematic paleontology and biostratigraphy of two early Cretaceous condensed sections from the Barents Sea. Polar Res 8:165–194Google Scholar
  2. Arthur MA, Schlanger SO, Jenkyns HC (1987) The Cenomanian-Turonian oceanic anoxic event. II. Palaeoceanographic controls on organic-matter production and preservation. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Geol Soc Spec Publ 26:401–420Google Scholar
  3. Brekke HD, Dahlgren S, Nyland B, Magnus C (1999) The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. In: Fleet AJ, Boldy SAR (eds) Proc 5th Conf Petroleum Geology of Northwest Europe, 26–29 October 1997, London. Geol Soc Lond, vol 5, pp 261–274Google Scholar
  4. Brumsack HJ (1980) Geochemistry of Cretaceous black shales from the Atlantic Ocean. Chem Geol 31:1–25Google Scholar
  5. Brumsack HJ (1988) Rezente CORG-reiche Sedimente als Schlüssel zum Verständnis fossiler Schwarzschiefer. Habilitationsschrift, University of GöttingenGoogle Scholar
  6. Bugge T, Elvebakk G, Bakke S, Fanavoll S, Lippard S, Leith TL, Mangerud G, Möller N, Nilsson I, Rømuld A, Schou L, Vigran JO, Weiss HM, Århus N (1989) (eds) Shallow drilling Barents Sea 1988. Trondheim, Norway, IKU repGoogle Scholar
  7. Bugge T, Elvebakk G, Fanavoll S, Mangerud G, Smelror M, Weiss HM, Gjelberg J, Kristensen SE, Nilsen K (2002) Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Mar Petrol Geol 19(1):13–37CrossRefGoogle Scholar
  8. De Graciansky PC, Brosse E, Deroo G, Herbin JP, Montadert L, Müller C, Sigal J, Schaaf A (1987) Organic-rich sediments and paleoenvironmental reconstructions of the Cretaceous North Atlantic. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Geol Soc Spec Publ 26:317–344Google Scholar
  9. Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2:9–31Google Scholar
  10. Doré AG (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. In: Channel JET, Winterer EL, Jansa LF (eds) Paleogeography and paleoceanography of the Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:441–492Google Scholar
  11. Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) Mjølnir structure: an impact crater in the Barents Sea. Geology 24:779–782CrossRefGoogle Scholar
  12. Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate in geological materials by coulometric titration. Chem Geol 53:125–128Google Scholar
  13. Erbacher J, Huber BT, Norris RD, Markey M (2001) Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409:325–327CrossRefPubMedGoogle Scholar
  14. Espitalie J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Source rock characterization method for petroleum exploration. In: Proc 9th Annu Offshore Technology Conf 3:439–443Google Scholar
  15. Füchtbauer H (ed) (1988) Sedimente und Sedimentgesteine, Sediment-Petrologie Teil II, 4. Auflage. Schweizerbart, StuttgartGoogle Scholar
  16. Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, van Veen P, Thierry J, Huang Z (1995) A Triassic, Jurassic and Cretaceous time scale. In: Berggren, WA, Kent DV, Aubry MP, Hardenbol J (eds) Geochronology, timescales and global stratigraphic correlation. SEPM Spec Publ 54:95–126Google Scholar
  17. Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21:291–294CrossRefGoogle Scholar
  18. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250CrossRefGoogle Scholar
  19. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner C (eds) Sea level changes: an integrated approach. Soc Econ Petrol Mineral Spec Publ 42:71–108Google Scholar
  20. Hardenbol J, Thierry J, Farley MB, Jacquin T, De Graciansky PC, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: De Graciansky PC, Hardenbol J, Thierry J, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc Sediment Geol Spec Publ 60:7–14Google Scholar
  21. Johansen SE, Ostisty BK, Birkeland Ø, Fedorovsky YF, Martirosjan VN, Bruun Christensen O, Cheredeev SI, Ignatenko EA, Margulis LS (1990) Hydrocarbon potential in the Barents Sea region; play distribution and potential. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proc Norwegian Petroleum Society Conf. NPF Spec Publ 2:273–320Google Scholar
  22. Langrock U, Stein R (2001) Organic matter preservation and paleoenvironmental implications for Lower Cretaceous marine sapropels from the Norwegian and Barents Sea shelf. European Union of Geosciences EUG XI J Conf Abstr 6:196–197Google Scholar
  23. Larsen RM, Fjaeran T, Skarpnes O (1990) Hydrocarbon potential of the Norwegian Barents Sea based on recent well results. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proc Norwegian Petroleum Society Conf. NPF Spec Publ 2:321–331Google Scholar
  24. Leith TL, Weiss HM, Mørk A, Århus N, Elvebakk G, Embry AF, Brooks PW, Steward KR, Pchelina TM, Brø EG, Verba ML, Danyushevskaya A, Borisov AV (1990) Mesozoic hydrocarbon source-rocks of the Arctic region, In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proc Norwegian Petroleum Society Conf. NPF Spec Publ 2:1–25Google Scholar
  25. Littke R, Baker DR, Rullkötter J (1997) Deposition of petroleum source rocks. In: Welte HD, Horsfield B, Baker DR (eds) Petroleum and basin evolution, insights from petroleum geochemistry. Geology and basin modeling. Springer, Berlin Heidelberg New York, pp 273–333Google Scholar
  26. Meyers P (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250CrossRefGoogle Scholar
  27. Mutterlose J, Brumsack HJ, Floegel S, Hay WW, Klein C, Langrock U, Lipinski M, Ricken W, Soeding E, Stein R, Swientek O (2003) The Norwegian–Greenland Seaway: a key area for understanding Late Jurassic to Early Cretaceous paleoenvironments. Paleoceanography (in press)Google Scholar
  28. Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. Am Assoc Petrol Geol Bull 70:318–329Google Scholar
  29. Price GD, Ruffell AH, Jones CE, Kalin RM, Mutterlose J (2000) Isotopic evidence for temperature variation during the Early Cretaceous (late Ryazanian–mid Hauterivian). Geol Soc Lond 155:335–343Google Scholar
  30. Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnbouw 55:179–184Google Scholar
  31. Sheridan RE (1987) Pulsation tectonics as the control of North Atlantic paleoceanography. In: Summerhayes CP, Shackleton NJ (eds) North Atlantic paleoceanography. Geol Soc Spec Publ 21:255–275Google Scholar
  32. Sinninghe Damsté JS, Köster J (1998) An euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet Sci Lett 158:165–173CrossRefGoogle Scholar
  33. Smelror M, Mørk A, Monteil E, Rutledge D, Leereveld H (1998) The Klippfisk Formation—a new lithostratigraphic unit of Lower Cretaceous platform carbonates on the Western Barents Shelf. Polar Res 17:181–202Google Scholar
  34. Smelror M, Mørk A, Mørk MBE, Weiss HM, Løseth H (2001) Middle Jurassic–Lower Cretaceous transgressive-regressive sequences and facies distribution off Troms, northern Norway. In: Martinsen OJ, Dreyer T (eds) Sedimentary environments offshore Norway—Paleozoic to Recent. NPF Spec Publ 10:211–232Google Scholar
  35. Stein R (1990) Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Mar Lett 10:37–44Google Scholar
  36. Stein R (1991) Accumulation of organic carbon in marine sediments. Springer, Berlin Heidelberg New York, Lecture Notes in Earth Sciences 34Google Scholar
  37. Stein R, Rullkötter J, Welte DH (1986) Accumulation of organic-carbon-rich sediments in the late Jurassic and Cretaceous Atlantic Ocean—A synthesis. Chem Geol 56:1–32Google Scholar
  38. Street C, Brown PR (2000) Paleobiogeography of Early Cretaceous (Berriasian–Barremian) calcareous nannoplankton. Mar Micropaleontol 39:265–291CrossRefGoogle Scholar
  39. Taylor GH, Teichmüller M, Davies A, Diessel CFK, Littke R, Robert P (eds) (1998) Organic petrology. Bornträger, BerlinGoogle Scholar
  40. Tsikalas F, Gudlaugsson ST, Faleide JI (1998) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110(5):537–552CrossRefGoogle Scholar
  41. Twichell SC, Meyers PA, Diester-Haass L (2002) Significance of high C/N ratios in organic carbon-rich Neogene sediments under the Benguela Current upwelling system. Org Geochem 33:715–722CrossRefGoogle Scholar
  42. Van de Schootbrugge B, Föllmi KB, Bulot LG, Burns SJ (2000) Paleoceanographic changes during the early Cretaceous (Valanginian–Hauterivian): evidence from oxygen and carbon stable isotopes. Earth Planet Sci Lett 181:15–31CrossRefGoogle Scholar
  43. Waples DW, Sloan JR (1980) Carbon and nitrogen diagenesis in deep sea sediments. Geochim Cosmochim Acta 44(10):1463–1470Google Scholar
  44. Wedepohl KH (1970) Environmental influences on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the Earth. Pergamon, Oxford, pp 307–333Google Scholar
  45. Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60(20):3897–3912Google Scholar
  46. Wilkin RT, Arthur MA, Dean WE (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet Sci Lett 148:517–525CrossRefGoogle Scholar
  47. Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Norwegian Petrol Directorate Bull 4:42–65Google Scholar
  48. Ziegler PA (1988) Evolution of the Arctic–North Atlantic and the western Tethys. AAPG Mem 43Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Uwe Langrock
    • 1
    Email author
  • Ruediger Stein
    • 1
  • Marcus Lipinski
    • 2
  • Hans-Jürgen Brumsack
    • 2
  1. 1.Department of GeosciencesAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Institute for Chemistry and Biology of the Marine Environments (ICBM)Carl von Ossietzky UniversityOldenburgGermany

Personalised recommendations