Advertisement

Shape-free polygonal hybrid displacement-function element method for analyses of Mindlin–Reissner plates

  • 31 Accesses

Abstract

A high-performance shape-free polygonal hybrid displacement-function finite-element method is proposed for analyses of Mindlin–Reissner plates. The analytical solutions of displacement functions are employed to construct element resultant fields, and the three-node Timoshenko’s beam formulae are adopted to simulate the boundary displacements. Then, the element stiffness matrix is obtained by the modified principle of minimum complementary energy. With a simple division, the integration of all the necessary matrices can be performed within polygonal element region. Five new polygonal plate elements containing a mid-side node on each element edge are developed, in which element HDF-PE is for general case, while the other four, HDF-PE-SS1, HDF-PE-Free, IHDF-PE-SS1, and IHDF-PE-Free, are for the edge effects at different boundary types. Furthermore, the shapes of these new elements are quite free, i.e., there is almost no limitation on the element shape and the number of element sides. Numerical examples show that the new elements are insensitive to mesh distortions, possess excellent and much better performance and flexibility in dealing with challenging problems with edge effects, complicated loading, and material distributions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Cen S, Shang Y (2015) Developments of Mindlin–Reissner Plate elements. Math Probl Eng 2015:12. https://doi.org/10.1155/2015/456740

  2. 2.

    Nguyen-Xuan H (2017) A polygonal finite element method for plate analysis. Comput Struct 188:45–62. https://doi.org/10.1016/j.compstruc.2017.04.002

  3. 3.

    Perumal L (2018) A brief review on polygonal/polyhedral finite element methods. Math Probl Eng 2018:22. https://doi.org/10.1155/2018/5792372

  4. 4.

    Wachspress EL (1971) A rational basis for function approximation. IMA J Appl Math 8(1):223–252

  5. 5.

    Ghosh S, Mukhopadhyay SN (1993) A material based finite-element analysis of heterogeneous media involving Dirichlet Tessellations. Comput Methods Appl Mech Eng 104(2):211–247. https://doi.org/10.1016/0045-7825(93)90198-7

  6. 6.

    Zhang J, Katsube N (1997) A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids. Comput Methods Appl Mech Eng 148(3–4):225–234. https://doi.org/10.1016/s0045-7825(97)00062-5

  7. 7.

    Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7(1):13–22. https://doi.org/10.1080/10867651.2002.10487551

  8. 8.

    Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066. https://doi.org/10.1002/nme.1141

  9. 9.

    Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem Anal Des 43(11–12):847–860. https://doi.org/10.1016/j.finel.2007.05.009

  10. 10.

    Song C, Wolf JP (1997) The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Comput Methods Appl Mech Eng 147(3–4):329–355. https://doi.org/10.1016/s0045-7825(97)00021-2

  11. 11.

    Zhou PL, Cen S (2015) A novel shape-free plane quadratic polygonal hybrid stress-function element. Math Probl Eng 2015:1–13. https://doi.org/10.1155/2015/491325

  12. 12.

    Zhou MJ, Cen S, Bao Y, Li CF (2014) A quasi-static crack propagation simulation based on shape-free hybrid stress-function finite elements with simple remeshing. Comput Methods Appl Mech Eng 275:159–188. https://doi.org/10.1016/j.cma.2014.03.006

  13. 13.

    Cen S, Bao Y, Li CF (2016) Quasi-static crack propagation modeling using shape-free hybrid stress-function elements with drilling degrees of freedom. Int J Comput Methods 13(03):1650014. https://doi.org/10.1142/s0219876216500146

  14. 14.

    Peng Y, Zhang L, Pu J, Guo Q (2014) A two-dimensional base force element method using concave polygonal mesh. Eng Anal Bound Elem 42:45–50. https://doi.org/10.1016/j.enganabound.2013.09.002

  15. 15.

    Videla J, Natarajan S, Bordas SPA (2019) A new locking-free polygonal plate element for thin and thick plates based on Reissner-Mindlin plate theory and assumed shear strain fields. Comput Struct 220:32–42. https://doi.org/10.1016/j.compstruc.2019.04.009

  16. 16.

    Katili I, Maknun IJ, Katili AM, Bordas SPA, Natarajan S (2019) A unified polygonal locking-free thin/thick smoothed plate element. Compos Struct 219:147–157. https://doi.org/10.1016/j.compstruct.2019.03.020

  17. 17.

    Cen S, Wu CJ, Li Z, Shang Y, Li CF (2019) Some advances in high-performance finite element methods. Eng Comput 36(8):2811–2834. https://doi.org/10.1108/ec-10-2018-0479

  18. 18.

    Arnold DN, Falk RS (1989) Edge effects in the Reissner–Mindlin plate theory. Analytical and Computational Models for Shells, pp 71–90

  19. 19.

    Cen S, Shang Y, Li CF, Li HG (2014) Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin–Reissner plate. Int J Numer Methods Eng 98(3):203–234. https://doi.org/10.1002/nme.4632

  20. 20.

    Shang Y, Cen S, Li CF, Huang JB (2015) An effective hybrid displacement function element method for solving the edge effect of Mindlin–Reissner plate. Int J Numer Methods Eng 102(8):1449–1487. https://doi.org/10.1002/nme.4843

  21. 21.

    Shang Y, Cen S, Li Z, Li CF (2017) Improved hybrid displacement function (IHDF) element scheme for analysis of Mindlin–Reissner plate with edge effect. Int J Numer Methods Eng 111(12):1120–1169. https://doi.org/10.1002/nme.5496

  22. 22.

    Bao Y, Cen S, Li CF (2017) Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin–Reissner plates. Eng Comput 34(2):548–586. https://doi.org/10.1108/ec-04-2016-0143

  23. 23.

    Huang J-B, Cen S, Shang Y, Li C-F (2017) A new triangular hybrid displacement function element for static and free vibration analyses of Mindlin–Reissner plate. Lat Am J Solids Strut 14(5):765–804

  24. 24.

    Hu H (1984) Variational principles of theory of elasticity with applications. CRC Press, Boca Raton

  25. 25.

    Shang Y, Li CF, Zhou MJ (2019) A novel displacement-based Trefftz plate element with high distortion tolerance for orthotropic thick plates. Eng Anal Bound Elem 106:452–461. https://doi.org/10.1016/j.enganabound.2019.06.002

  26. 26.

    Shang Y, Cen S, Ouyan WG (2018) New hybrid-Trefftz Mindlin–Reissner plate elements for efficiently modeling the edge zones near free/SS1 edges. Eng Comput 35(1):136–156. https://doi.org/10.1108/ec-04-2017-0123

  27. 27.

    Jelenic G, Papa E (2011) Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order. Arch Appl Mech 81(2):171–183. https://doi.org/10.1007/s00419-009-0403-1

  28. 28.

    Ayad R, Dhatt G, Batoz JL (1998) A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MiSP model. Int J Numer Methods Eng 42(7):1149–1179. https://doi.org/10.1002/(sici)1097-0207(19980815)42:7%3c1149:aid-nme391%3e3.0.co;2-2

  29. 29.

    Ayad R, Rigolot A (2002) An improved four-node hybrid-mixed element based upon Mindlin’s plate theory. Int J Numer Methods Eng 55(6):705–731. https://doi.org/10.1002/nme.528

  30. 30.

    Morley LSD (1963) Skew plates and structures. Pergamon Press, Oxford (distributed in the Western Hemisphere by Macmillan, New York)

  31. 31.

    Babuska I, Scapolla T (1989) Benchmark computation and performance evaluation for a rhombic plate bending problem. Int J Numer Methods Eng 28(1):155–179. https://doi.org/10.1002/nme.1620280112

  32. 32.

    Abaqus 6.9 (2009) HTML Documentation. Dassault Systèmes Simulia Corp., Providence

  33. 33.

    Kant T, Hinton E (1983) Mindlin plate analysis by segmentation method. J Eng Mech 109(2):537–556. https://doi.org/10.1061/(asce)0733-9399(1983)109:2(537)

Download references

Acknowledgements

The authors would like to thank for the financial supports from the National Natural Science Foundation of China (11872229, 11702133) and the Natural Science Foundation of Jiangsu Province (BK20170772).

Author information

Correspondence to Song Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Cen, S. & Shang, Y. Shape-free polygonal hybrid displacement-function element method for analyses of Mindlin–Reissner plates. Engineering with Computers (2020). https://doi.org/10.1007/s00366-019-00922-x

Download citation

Keywords

  • Finite-element methods
  • Mindlin–Reissner plate
  • Polygonal elements
  • Hybrid displacement-function method
  • Mesh distortion