Advertisement

Multi-objective design optimization of steel moment frames considering seismic collapse safety

  • Saeed GholizadehEmail author
  • Fayegh Fattahi
Original Article
  • 86 Downloads

Abstract

This study focuses on multi-objective performance-based seismic optimization of steel moment frames by an efficient algorithm. In the present study, an efficient framework is developed to find a Pareto front for multi-objective optimization problem of steel moment frames involving global damage index and initial cost as two conflicting objective functions. To this end, a new multi-objective algorithm is introduced and its efficiency is demonstrated trough a set of benchmark multi-objective truss design examples. Subsequently, a 6- and a 12-story steel moment frame are designed by the proposed algorithm. To evaluate the seismic performance and collapse capacity of the optimal designs, damage indices and incremental dynamic analysis are used and their seismic damage costs and adjusted collapse margin ratios are evaluated.

Keywords

Steel moment frame Damage index Performance-based design Collapse-resistance capacity Incremental dynamic analysis Multi-objective optimization 

Notes

References

  1. 1.
    Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Elsevier, LondonGoogle Scholar
  2. 2.
    Gholizadeh S (2015) Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network. Adv Eng Softw 81:50–65.  https://doi.org/10.1016/j.advengsoft.2014.11.003 CrossRefGoogle Scholar
  3. 3.
    Kaveh A, Nasrollahi A (2014) Performance-based seismic design of steel frames utilizing charged system search optimization. Appl Soft Comput 22:213–221.  https://doi.org/10.1016/j.asoc.2014.05.012 CrossRefGoogle Scholar
  4. 4.
    Kaveh A, Farahmand Azar B, Hadidi A, Rezazadeh Sorochi F, Talatahari S (2014) Performance-based seismic design of steel frames using ant colony optimization. J Constr Steel Res 66:566–574.  https://doi.org/10.1016/j.jcsr.2009.11.006 CrossRefGoogle Scholar
  5. 5.
    Fragiadakis M, Lagaros ND, Papadrakakis M (2006) Performance-based multiobjective optimum design of steel structures considering life-cycle cost. Struct Multidisc Optim 32:1–11.  https://doi.org/10.1007/s00158-006-0009-y CrossRefGoogle Scholar
  6. 6.
    Kaveh A, Kalateh-Ahani M, Fahimi-Farzam M (2014) Damage-based optimization of large-scale steel structures. Earthq Struct 7:1119–1139.  https://doi.org/10.12989/eas.2014.7.6.1119 CrossRefGoogle Scholar
  7. 7.
    Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31(3):491–514.  https://doi.org/10.1002/eqe.141 CrossRefGoogle Scholar
  8. 8.
    Ibarra LF, Krawinkler H (2005) Global collapse of frame structures under seismic excitations. Berkeley: Report No. PEER 2005/06, Pacific Earthquake Engineering Research CenterGoogle Scholar
  9. 9.
    Haselton CB, Baker JW, Liel AB, Deierlein GG (2011) Accounting for ground motion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon. J Struct Eng 137(3):332–344.  https://doi.org/10.1061/(ASCE)ST.1943-541X.0000103 CrossRefGoogle Scholar
  10. 10.
    Haselton CB, Liel AB, Deierlein GG, Dean BS, Chou JH (2011) Seismic collapse safety of reinforced concrete buildings: I. Assessment of ductile moment frames. J Struct Eng 137(4):481–491.  https://doi.org/10.1061/(asce)st.1943-541x.0000318 CrossRefGoogle Scholar
  11. 11.
    FEMA-P695 (2009) Quantification of building seismic performance factors. Federal Emergency Management Agency, WashingtonGoogle Scholar
  12. 12.
    Asgarian B, Sadrinezhad A, Alanjari P (2010) Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. J Constr Steel Res 66:178–190.  https://doi.org/10.1016/j.jcsr.2009.09.001 CrossRefGoogle Scholar
  13. 13.
    Fattahi F, Gholizadeh S (2019) Seismic fragility assessment of optimally designed steel moment frames. Eng Struct 179:37–51.  https://doi.org/10.1016/j.engstruct.2018.10.075 CrossRefGoogle Scholar
  14. 14.
    HAZUS-MH MR1 (2003) Multi-hazard loss estimation methodology earthquake model. FEMA-National Institute of Building Sciences, WashingtonGoogle Scholar
  15. 15.
    Kang YJ, Wen YK (2000) Minimum life-cycle cost structural design against natural hazards Tech. Rep. SRS 629. University of Illinois at Urbana-ChampaignGoogle Scholar
  16. 16.
    Park YJ, Ang AH-S (1985) Mechanistic seismic damage model for reinforced concrete. ASCE J Struct Eng 111:722–739.  https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722) CrossRefGoogle Scholar
  17. 17.
    Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279.  https://doi.org/10.1109/TEVC.2004.826067 CrossRefGoogle Scholar
  18. 18.
    Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172.  https://doi.org/10.1162/106365600568167 CrossRefGoogle Scholar
  19. 19.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197.  https://doi.org/10.1109/4235.996017 CrossRefGoogle Scholar
  20. 20.
    Tejani GG, Kumar S, Gandomi AH (2018) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput.  https://doi.org/10.1007/s00366-019-00846-6 CrossRefGoogle Scholar
  21. 21.
    Saadat S, Camp CV, Pezeshk S (2014) Seismic performance-based design optimization considering direct economic loss and direct social loss. Eng Struct 76:193–201.  https://doi.org/10.1016/j.engstruct.2014.07.008 CrossRefGoogle Scholar
  22. 22.
    Choi SW, Park HS (2012) Multi-objective seismic design method for ensuring beam hinging mechanism in steel frames. J Constr Steel Res 74:17–25.  https://doi.org/10.1016/j.jcsr.2012.01.012 CrossRefGoogle Scholar
  23. 23.
    Mokarram V, Banan MR (2018) An improved multi-objective optimization approach for performance-based design of structures using nonlinear time-history analyses. Appl Soft Comput 73:647–665.  https://doi.org/10.1016/j.asoc.2018.08.048 CrossRefGoogle Scholar
  24. 24.
    Xu J, Spencer BF, Lu X (2017) Performance-based optimization of nonlinear structures subject to stochastic dynamic loading. Eng Struct 134:334–345.  https://doi.org/10.1016/j.engstruct.2016.12.051 CrossRefGoogle Scholar
  25. 25.
    Gholizadeh S, Baghchevan A (2017) Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm. Eng Comput 33:1045–1060.  https://doi.org/10.1007/s00366-017-0515-0 CrossRefGoogle Scholar
  26. 26.
    Kaveh A, Laknejadi K, Alinejad B (2012) Performance-based multi-objective optimization of large steel structures. Acta Mech 223:355–369.  https://doi.org/10.1007/s00707-011-0564-1 CrossRefzbMATHGoogle Scholar
  27. 27.
    Kaveh A, Kalateh-Ahani M, Fahimi-Farzam M (2014) Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach. Earthq Struct 7:271–294.  https://doi.org/10.12989/eas.2014.7.3.271 CrossRefGoogle Scholar
  28. 28.
    Kaveh A, Fahimi-Farzam M, Kalateh-Ahani M (2015) Performance-based multi-objective optimal design of steel frame structures: nonlinear dynamic procedure. Sci Iran A 22:373–387Google Scholar
  29. 29.
    Kaveh A, Fahimi-Farzam M, Kalateh-Ahani M (2015) Optimum design of steel frame structures considering construction cost and seismic damage. Smart Struct Syst 16:1–26.  https://doi.org/10.12989/sss.2015.16.1.001 CrossRefGoogle Scholar
  30. 30.
    FEMA-350 (2000) Recommended seismic design criteria for new steel moment-frame buildings. Federal Emergency Management Agency, WashingtonGoogle Scholar
  31. 31.
    Park YJ, Ang AH, Wen YK (1987) Damage-limiting aseismic design of buildings. Earthq Spectra 3:1–26.  https://doi.org/10.1193/1.1585416 CrossRefGoogle Scholar
  32. 32.
    Kunnath SK, Reinhorn AM, Lobo RF (1992) IDARC version 3.0: a program for the inelastic damage analysis of reinforced concrete structures. Technical report NCEER-92-0022. National Center for Earthquake Engineering Research, Buffalo, NYGoogle Scholar
  33. 33.
    Ghosh S, Datta D, Katakdhond AA (2011) Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems. Eng Struct 33:2509–2524.  https://doi.org/10.1016/j.engstruct.2011.04.023 CrossRefGoogle Scholar
  34. 34.
    Mekki M, Elachachi SM, Breysse D, Zoutat M (2016) Seismic behavior of R.C. structures including soil-structure interaction and soil variability effects. Eng Struct 126:15–26.  https://doi.org/10.1016/j.engstruct.2016.07.034 CrossRefGoogle Scholar
  35. 35.
    AISC 360-16 (2016) Specification for structural steel buildings. American Institute of Steel Construction, ChicagoGoogle Scholar
  36. 36.
    Gholizadeh S, Fattahi F (2012) Design optimization of tall steel buildings by a modified particle swarm algorithm. Struct Design Tall Spec Build 23:285–301.  https://doi.org/10.1002/tal.1042 CrossRefGoogle Scholar
  37. 37.
    AISC 341-16 (2016) Seismic provisions for structural steel buildings. American Institute of Steel Construction, ChicagoGoogle Scholar
  38. 38.
    OpenSees version 2.4.0 [Computer software]. PEER, Berkeley, CAGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringUrmia UniversityUrmiaIran

Personalised recommendations