We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Enhanced leadership-inspired grey wolf optimizer for global optimization problems

  • 128 Accesses

  • 1 Citations

Abstract

Grey wolf optimizer (GWO) is a recently developed population-based algorithm in the area of nature-inspired optimization. The leading hunters in GWO are responsible for exploring the new promising regions of the search space. However, in some circumstances, the classical GWO suffers from the problem of premature convergence due to the stagnation at sub-optimal solutions. The insufficient guidance of search in GWO leads to slow convergence. Therefore, to alleviate from all the above issues, an improved leadership-based GWO called GLF–GWO is introduced in the present paper. In GLF–GWO, the leaders are updated through Levy-flight search mechanism. The proposed GLF–GWO algorithm enhances the search efficiency of leading hunters in GWO and provides better guidance to accelerate the search process of GWO. In the GLF–GWO algorithm, the greedy selection is introduced to avoid their divergence from discovered promising areas of the search space. To validate the efficiency of the GLF–GWO, the standard benchmark suite IEEE CEC 2014 and IEEE CEC 2006 are taken. The proposed GLF–GWO algorithm is also employed to solve some real-engineering problems. Experimental results reveal that the proposed GLF–GWO algorithms significantly improve the performance of the classical version of GWO.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine and human science, 1995. MHS’95, Proceedings of the sixth international symposium on. IEEE, pp 39–43

  2. 2.

    Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano

  3. 3.

    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

  4. 4.

    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

  5. 5.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

  6. 6.

    Wolpert DH, Macready WG (1995) No free lunch theorems for search, vol 10. Technical Report SFI-TR-95-02-010, Santa Fe Institute

  7. 7.

    Madadi A, Motlagh MM (2014) Optimal control of DC motor using grey wolf optimizer algorithm. TJEAS J 4(4):373–379

  8. 8.

    Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161

  9. 9.

    Song X, Tang L, Zhao S, Zhang X, Li L, Huang J, Cai W (2015) Grey wolf optimizer for parameter estimation in surface waves. Soil Dyn Earthq Eng 75:147–157

  10. 10.

    Sulaiman MH, Mustaffa Z, Mohamed MR, Aliman O (2015) Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl Soft Comput 32:286–292

  11. 11.

    Guha D, Roy PK, Banerjee S (2016) Load frequency control of interconnected power system using grey wolf optimization. Swarm Evolut Comput 27:97–115

  12. 12.

    Zhang S, Zhou Y, Li Z, Pan W (2016) Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv Eng Softw 99:121–136

  13. 13.

    Kamboj VK, Bath SK, Dhillon JS (2016) Solution of non-convex economic load dispatch problem using grey wolf optimizer. Neural Comput Appl 27(5):1301–1316

  14. 14.

    Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

  15. 15.

    Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

  16. 16.

    Muangkote N, Sunat K, Chiewchanwattana S (2014) An improved grey wolf optimizer for training q-Gaussian radial basis functional-link nets. In: Computer science and engineering conference (ICSEC), 2014 international. IEEE, pp 209–214

  17. 17.

    El-Fergany AA, Hasanien HM (2015) Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr Power Compon Syst 43(13):1548–1559

  18. 18.

    Jayabarathi T, Raghunathan T, Adarsh BR, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641

  19. 19.

    Rodríguez L, Castillo O, Soria J, Melin P, Valdez F, Gonzalez CI et al (2017) A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Appl Soft Comput 57:315–328

  20. 20.

    Yang B, Zhang X, Yu T, Shu H, Fang Z (2017) Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine. Energy Convers Manag 133:427–443

  21. 21.

    Tawhid MA, Ali AF (2017) A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet Comput 9(4):347–359

  22. 22.

    Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

  23. 23.

    Lu C, Gao L, Li X, Xiao S (2017) A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Eng Appl Artif Intell 57:61–79

  24. 24.

    Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput 60:115–134

  25. 25.

    Tawhid MA, Ali AF (2018) Multidirectional grey wolf optimizer algorithm for solving global optimization problems. Int J Comput Intell Appl 17(04):1850022

  26. 26.

    Tu Q, Chen X, Liu X (2018) Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl Soft Comput 76:16–30

  27. 27.

    Singh D, Dhillon JS (2018) Ameliorated grey wolf optimization for economic load dispatch problem. Energy 169:398–419

  28. 28.

    Saxena A, Kumar R, Das S (2019) β-Chaotic map enabled grey wolf optimizer. Appl Soft Comput 75:84–105

  29. 29.

    Qais MH, Hasanien HM, Alghuwainem S (2018) Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl Soft Comput 69:504–515

  30. 30.

    Gupta S, Deep K (2019) An efficient grey wolf optimizer with opposition-based learning and chaotic local search for integer and mixed-integer optimization problems. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-03806-w

  31. 31.

    Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Proc 88(3):192–197

  32. 32.

    Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome

  33. 33.

    Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

  34. 34.

    Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  35. 35.

    Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CC, Deb K (2006) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. J Appl Mech 41(8):8–31

  36. 36.

    Mittal N, Singh U, Sohi BS (2016) Modified grey wolf optimizer for global engineering optimization. Appl Comput Intell Soft Comput 2016:8

  37. 37.

    Long W, Liang X, Cai S, Jiao J, Zhang W (2017) A modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problems. Neural Comput Appl 28(1):421–438

  38. 38.

    Pradhan M, Roy PK, Pal T (2017) Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system. Ain Shams Eng J 9(4):2015–2025

  39. 39.

    Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

  40. 40.

    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

  41. 41.

    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

  42. 42.

    Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1–13

  43. 43.

    Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229

  44. 44.

    Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

  45. 45.

    Sharma TK, Pant M, Singh VP (2012) Improved local search in artificial bee colony using golden section search. arXiv preprint arXiv:1210.6128

  46. 46.

    Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

  47. 47.

    Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

  48. 48.

    Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Aarts E, Lenstra JK (eds) Simulated annealing: theory and applications. Springer, Dordrecht, pp 7–15

  49. 49.

    Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Evolutionary computation, 2005. The 2005 IEEE Congress on. IEEE, vol 2, pp 1769–1776

  50. 50.

    Nowcki H (1974) Optimization in pre-contract ship design. In: Fujita Y, Lind K, Williams TJ (eds) Computer applications in the automation of shipyard operation and ship design, vol 2. NorthHolland. Elsevier, New York, pp 327–338

  51. 51.

    Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

  52. 52.

    Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748

  53. 53.

    Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9):1583–1599

  54. 54.

    Gandomi AH, Yang XS (2011) Benchmark problems in structural optimization. In: Koziel S, Yang X-S (eds) Computational optimization, methods and algorithms. Springer, Berlin, pp 259–281

  55. 55.

    Mezura-Montes E, Coello CC, Landa-Becerra R (2003) Engineering optimization using simple evolutionary algorithm. In: Tools with artificial intelligence, 2003. Proceedings. 15th IEEE international conference on. IEEE, pp 149–156

  56. 56.

    Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34(4):341–354

Download references

Acknowledgements

The first author is grateful for the financial support provided by Ministry of Human Resource and Development (MHRD), Government of India (Grant no. MHR-02-41-113-429).

Author information

Correspondence to Shubham Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Deep, K. Enhanced leadership-inspired grey wolf optimizer for global optimization problems. Engineering with Computers (2019). https://doi.org/10.1007/s00366-019-00795-0

Download citation

Keywords

  • Numerical optimization
  • Swarm intelligence
  • No free lunch theorem
  • Levy-flight search